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Abstract 

Accurate measurement of low-frequency vibration parameters is critical for assessing the performance, stability, 

and dynamic characteristics of mechanical systems. This study proposes a monocular vision-based method for 

non-contact measurement of motion parameters in low-frequency shakers. The proposed method utilizes high-

contrast sinusoidal fringe markers and high-resolution image acquisition to track fringe density variations caused 

by periodic out-of-plane motion. To enhance frequency estimation accuracy and mitigate spectral leakage, we 

introduce an improved time-shifting correcting method, which features adaptive time-lapse selection and statistical 

outlier elimination to improve spectral resolution and robustness. Using a calibrated imaging model, the extracted 

fringe density signals are further processed to derive precise displacement and acceleration values. An 

experimental platform is established to validate the proposed method against conventional methods based on 

grating ruler displacement sensors and accelerometers. Experimental results demonstrate that the proposed method 

achieves high measurement accuracy, with displacement amplitude errors confined within 0.5% and total harmonic 

distortion values in acceleration measurements below 0.1. Additionally, the proposed method also exhibits 

excellent stability across a range of low-frequency scenarios. These findings confirm that the proposed method 

offers a reliable and non-contact alternative for low-frequency vibration measurement, holding strong potential for 

advancing applications in structural health monitoring, dynamic system diagnostics, and non-destructive testing. 

Keywords: monocular vision, low-frequency shakers, vibration measurement, improved time-shifting correcting 

method. 

1. Introduction 

Vibration measurement technology is a cornerstone in numerous fields, including industrial 

manufacturing, structural engineering, aerospace diagnostics, and scientific experimentation [1-

4]. Accurate vibration data is critical for evaluating the operational integrity, performance 

efficiency, and safety of mechanical systems. Traditionally, such measurements have relied on 

contact-based sensors, such as accelerometers and displacement transducers, which convert 

physical motion into electrical signals for analysis. These sensors offer high sensitivity, mature 

signal processing techniques, and strong linearity, but they face significant challenges in 

practical applications. Their installation demands precise alignment, secure mounting, and 

calibration. Additionally, they are susceptible to external disturbances, including temperature 

fluctuations, electromagnetic interference, and mechanical coupling errors. These limitations 

are particularly pronounced in low-frequency vibration scenarios, where large displacements 

and slow oscillations reduce the efficacy of traditional sensors, which are typically optimized 

for high-frequency, small-amplitude conditions [5-7]. Low-frequency signals are also more 

vulnerable to environmental noise, and their slow temporal changes complicate time-domain 

analysis. Consequently, there is a pressing need for advanced, high-precision, and non-invasive 
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measurement technologies. Non-contact methods, particularly those leveraging machine vision 

and optical sensing, have emerged as promising alternatives. These methods eliminate physical 

contact, minimize measurement-induced disturbances, and offer enhanced flexibility in 

installation and monitoring. As a result, the development of non-contact vibration measurement 

methods tailored for low-frequency applications has become a key focus of ongoing research 

and innovation. 

1.1. Brief literature review 

In low-frequency motion scenarios, traditional sensing methods often face significant 

challenges. Historically, contact-based measurement methods based on laser displacement 

sensors, accelerometers, and grating rulers have been widely adopted due to their high 

measurement precision, technological maturity, and broad availability across industrial and 

research settings [8]. Despite their demonstrated reliability, these conventional methods are 

constrained by several inherent limitations. Mechanical interference remains a persistent issue, 

where the physical coupling between the sensor and the structure can inadvertently alter the 

natural vibration behavior of the system being monitored. Additionally, these methods typically 

involve complex, labor-intensive, and invasive installation procedures, requiring careful 

alignment, calibration, and environmental conditioning to ensure measurement accuracy. 

Moreover, when dealing with large-amplitude and low-frequency vibrations, these sensors 

often experience performance degradation, struggling to maintain the same level of sensitivity 

and precision observed at higher frequencies [9-12]. 

In recent years, non-contact optical measurement methods, particularly those based on 

machine vision, have emerged as a promising alternative to traditional contact-based vibration 

measurement methods. By eliminating the need for direct physical attachment to the vibrating 

body, these methods preserve the natural dynamic behavior of the system while significantly 

improving the ease of deployment and measurement flexibility. Li et al. [13] introduce a 

machine vision method that estimates vibration amplitude by analyzing motion blur in 

sequential images. Tang et al. [14] develop a non-contact method aimed at measuring small-

amplitude disk vibrations, leveraging camera calibration and coordinate transformation. Dong 

et al. [15] design a vision-based system capable of multi-point synchronous measurement and 

modal identification, offering superior adaptability and precision compared with conventional 

accelerometers. Zhong et al. [16] propose a tri-axial vibration monitoring system that employed 

constant-density sinusoidal fringe patterns. Yang et al. [17] introduce a monocular vision-based 

calibration method for low-frequency sensors, incorporating time-spatial synchronization to 

enhance phase accuracy, proving particularly effective for frequencies below 0.3 Hz, where it 

even outperformed laser interferometry. Zuo et al. [18] present an image restoration method for 

measuring low-frequency sinusoidal vibrations. Collectively, these vision-based methods are 

non-invasive, capable of operating in diverse environmental conditions, and provide high 

spatial resolution. However, most existing methods have been optimized for specific 

operational contexts, typically focusing on medium and low frequency or small-displacement 

scenarios. As a result, their performance often deteriorates in ultra-low frequency and large 

amplitude vibration environments, where challenges such as signal instability, low signal-to-

noise ratios, and spectral leakage during frequency analysis become more pronounced. To 

mitigate these issues, researchers have explored various signal processing enhancements, 

including the use of window functions and phase-based frequency refinement techniques [19]. 

Although these strategies yield incremental improvements, they often rely on fixed parameters 

and remain highly sensitive to noise and signal variability, thus limiting their robustness and 

effectiveness in real-world and low-frequency measurement applications. 
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1.2. Our contributions 

Building on the preceding analysis, this study introduces an improved time-shifting 

correcting method (ITCM) that significantly enhances frequency estimation accuracy in fringe-

based monocular vision systems. By integrating adaptive time-lapse selection with a robust 

outlier elimination strategy, ITCM effectively addresses persistent challenges of spectral 

leakage and noise interference, which often compromise the reliability of low-frequency 

vibration measurements. Furthermore, a new non-contact measurement system is developed to 

exploit the capability of ITCM. The system utilizes high-contrast and customized fringe 

markers combined with high-resolution image acquisition, enabling the robust capture of low-

frequency vibration characteristics with minimal external disturbance or mechanical 

interference. The main contributions of this study are summarized as follows: 

1. ITCM is proposed, which integrates dynamic time-lapse adjustment and statistical outlier 

suppression. This method significantly improves the accuracy, stability, and robustness of 

frequency extraction from discrete fringe sequences, particularly in the presence of spectral 

leakage and noise. 

2. A non-contact vibration measurement system is designed, utilizing high-contrast 

customized fringe markers and high-resolution precision imaging. This system enables 

reliable, non-invasive, and high-fidelity monitoring of low-frequency vibrational 

behaviour, preserving the natural dynamics of the measured structures.  

3. Extensive experimental testing is conducted to benchmark the proposed method against 

traditional contact-based methods, including grating rulers and acceleration sensors. The 

results demonstrate that the proposed method achieves high measurement precision in both 

displacement and acceleration estimations, with superior repeatability and robustness 

across a wide range of low-frequency vibration scenarios.  

The remainder of this study is organized as follows: Section 2 presents the theoretical 

foundation underlying the proposed methodology. Section 3 describes the system architecture 

and experimental setup. Finally, Section 4 concludes the study by summarizing the key findings 

and proposing potential directions for future research and expanded application areas. 

2. Methodology 

This study introduces an enhanced methodology for accurately measuring motion 

parameters of low-frequency shakers using monocular vision. The overall workflow, illustrated 

in Fig. 1. The process begins with region of interest (ROI) identification within captured image 

sequences. High-contrast fringe markers are isolated to ensure that subsequent analyses focus 

exclusively on relevant data, enhancing computational efficiency and measurement accuracy. 

Following ROI extraction, fringe density is computed from the selected regions, capturing 

temporal variations induced by the shaker’s periodic motion. These variations serve as the basis 

for deriving vibration displacement parameters. Direct frequency analysis of the fringe density 

signal is often hindered by spectral leakage, particularly in low-frequency, finite-length signals, 

leading to distorted frequency components and reduced estimation accuracy. To address this, 

ITCM is introduced, which enhances frequency estimation by dynamically adjusting the time-

shift interval and systematically removing statistical outliers from spectral data, thereby 

improving spectral resolution and robustness. This refinement ensures reliable extraction of 

vibration parameters under challenging low-frequency conditions. To estimate peak 

displacement, a sine approximation method (SAM) is employed to fit the extracted 

displacement data, enabling precise reconstruction of the vibration waveform and accurate 

identification of key motion characteristics, including amplitude and phase. This integrated 

approach ensures robust and accurate measurement of low-frequency vibration parameters. 
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Fig. 1. Overall workflow of the proposed method. 

2.1. ROI extraction 

Accurate extraction of ROI is fundamental to reliable fringe pattern analysis, as it directly 

impacts marker localization precision and the quality of subsequent image processing. This 

study employs a robust ROI determination strategy by utilizing four circular reference markers 

that geometrically enclose the central fringe region, as depicted in Fig. 2. To ensure stable and 

consistent localization of the ROI across sequential image frames, even under conditions 

involving motion-induced deformation or perspective variation, three geometric constraints are 

applied, including roundness, eccentricity, and convexity [20]: 

 

 

Fig. 2. Diagram of the characterization markers. 

1. Roundness C quantifies the circularity of a shape, defined as the ratio of its area A to the 

square of its perimeter P: 

 𝐶 = 4𝜋𝐴/𝑃2, (1) 

where the value of C approaching 1 indicates high circularity. 

2. Eccentricity E measures deviation from a perfect circle, computed based on image 

moments: 
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 𝐸 = √1 − 𝑏2/𝑎2 (2) 

where a and b are the lengths of the semi-major and semi-minor axes, respectively, derived 

from the shape’s inertia properties. Values of E nearing 0 signify greater similarity to a circle. 

3. Convexity V assesses the extent to which a shape fills its convex hull: 

 𝑉 = 𝑆/𝐻 (3) 

where S is the shape’s area and H is the area of its convex hull. A value of V close to 1 indicates 

minimal concavity and strong conformity to circular geometry. 

Contours meeting these criteria are retained, and a least-squares circle fitting method is 

applied to estimate the radius R of each marker. The centroid of each marker is computed using 

the image moment method, with the general form of the (i+j)-order spatial moment given by: 

 𝑚𝑖𝑗 = ∑ ∑ 𝑥𝑖
𝑥𝑦 𝑦𝑗𝐼(𝑥, 𝑦) (4) 

For centroid determination, only first-order moments are required. The centroid coordinates 

(𝑥̄, 𝑦̄) are calculated as: 

 𝑥 = 𝑚10/𝑚00, 𝑦 = 𝑚01/𝑚00 (5) 

where m00 is the zero-order moment (total intensity), and m10 and m01are the first-order moments 

along the x- and y-axes, respectively. 

The final ROI is defined by forming a quadrilateral bounding box using the four computed 

centroids. This ensures precise and consistent localization of the fringe region while effectively 

excluding background interference and non-target features, providing a robust foundation for 

subsequent fringe density analysis and vibration parameter extraction. 

2.2. Measurement principle 

The proposed method for low-frequency vibration measurement relies on analyzing 

temporal variations in fringe density within captured image sequences. During operation, a low-

frequency shaker induces periodic motion in characteristic markers affixed to its surface, 

moving perpendicular to the imaging plane relative to the image acquisition system. This 

motion causes cyclic changes in the distance between the markers and the camera, manifesting 

as periodic fluctuations of the fringe density in the image sequence. Specifically, the fringe 

density dynamically increases or decreases over time. By extracting and analyzing these density 

variations, the vibration parameters of the shaker, including frequency and amplitude, can be 

accurately estimated [21]. The measurement principle is illustrated in Fig. 3. 

 

 

Fig. 3. Fringe-based vibration measurement principle. 
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To quantitatively determine displacement, the proposed method integrates fringe density 

variation data with intrinsic parameters of the camera and geometrical properties of the fringe 

marker. Based on the pinhole imaging model, the following relationships are established.  

Under static conditions, the actual length L of a central fringe in the marker corresponds 

proportionally to its image length a on the sensor: 

 𝐿/𝑎 = 𝐷/𝐹 (6) 

where D is the object distance and F is the image distance on the sensor plane.  

During vibration, the fringe image length 𝑎′  varies with the changing distance between 

marker and camera. Therefore, the following expression is obtained under dynamic conditions: 

 (𝐷 + 𝛥𝑧)/𝐹 = 𝐿/𝑎′ (7) 

where 𝛥𝑧 is the displacement of the vibrating marker relative to the static position. 

Since fringe density d is inversely proportional to fringe image length, this expression can 

be reformulated in terms of fringe density under static d and vibrating 𝑑′ conditions: 

 𝛥𝑧 = 𝐷(
𝑎′

𝑎
− 1) = 𝐷(

𝑑

𝑑′
− 1) (8) 

Finally, the actual physical displacement is derived from the variation in fringe density, 

enabling accurate measurement for the motion of the shaker. 

2.3. Improved time-shifting correcting method 

Accurate frequency-domain transformation of sinusoidal fringe signals is essential for 

extracting vibration parameters in low-frequency displacement measurements. Direct 

application of fast Fourier transform (FFT) to the fringe density signal often introduces 

significant errors due to the finite duration of the signal, causing spectral leakage that spreads 

energy across adjacent spectral bins and distorts frequency components. To address these 

issues, a time-shifting correcting method (TCM) is employed, enhancing frequency estimation 

by analyzing phase differences between two time-shifted signal versions [22]. This phase 

relationship enables correction of the fundamental frequency beyond the resolution limit of 

discrete FFT. However, conventional TCM, with its fixed time-shift lengths, is sensitive to 

noise and signal variability, compromising robustness. 

To improve stability and reliability, this study proposes ITCM, which incorporates adaptive 

time-lapse selection and statistical outlier elimination. The implementation details of both TCM 

and ITCM are presented below, with the overall workflow of ITCM illustrated in Fig. 4. 

 

 

Fig. 4. Workflow of ITCM. 
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The fringe signal is modeled as a discrete-time sinusoidal sequence: 

 𝑥(𝑛) = 𝐴𝑠 𝑐𝑜𝑠( 2𝜋𝑓0𝑁𝑇𝑠 + 𝜙), (9) 

where As is the signal amplitude, f0 is the true vibration frequency, 𝜙 is the initial phase, 

𝑇𝑠  = 1/ 𝑓𝑠 is the sampling period, fs is the sampling frequency, N is the discrete time sample 

index. 

To mitigate spectral leakage due to finite signal duration, a Hanning window is applied to 

the time-domain signal: 

 𝜔(𝑛) = 0.5 − 0.5 𝑐𝑜𝑠(2𝜋𝑛/(𝑁 − 1)). (10) 

For the signal after adding the Hanning window, its discrete Fourier transform (DFT) 

formula is: 

 𝑋𝜔(𝑘) = ∑ 𝑥𝜔
𝑁−1
𝑛=0 (𝑛)𝑒−𝑗

2𝜋

𝑁
𝑘𝑛

, (11) 

where 𝑋𝜔(𝑘) represents the frequency spectrum of the windowed signal. 

For further refinement, the signal is temporally shifted by L samples: 

 𝑥𝐿(𝑛) = 𝑥(𝑛 + 𝐿). (12) 

According to the Fourier shift theorem, this time-domain shift induces a linear phase shift in 

the frequency domain: 

 𝑋𝐿(𝑘) = 𝑋(𝑘) ⋅ 𝑒𝑗
2𝜋

𝑁
𝑘𝐿

. (13) 

The phase shift between the original and shifted signals is computed as: 

 𝛥𝜃 = 𝑎𝑟𝑔( 𝑋𝐿(𝑘)) − 𝑎𝑟𝑔( 𝑋(𝑘)). (14) 

The corrected frequency is then: 

 𝑓co = 𝑓0 +
𝛥𝜃⋅𝑓𝑠

2𝜋𝐿
, (15) 

where f0 is the coarse frequency estimate from the FFT. 

ITCM enhances this process by replacing the static time shift L0 with a dynamic selection 

strategy, evaluating a set of shift lengths Li within an adaptive range: 

 𝐿𝑖 = 𝐿0 ± 𝜆𝑁, (16) 

where 𝜆 is an adaptive coefficient adjusted based on the fringe signal’s spectral properties and 

N is the signal length.  

The adaptive coefficient 𝜆 is computed based on the rate of amplitude variation: 

 𝜆 = 𝑘1 ⋅
∑ |𝑁−1

𝑖=1 𝑥(𝑖)−𝑥(𝑖−1)|

∑ |𝑁
𝑖=1 𝑥(𝑖)|

, (17) 

where x(i) is the signal amplitude at index I and 𝑘1 is a scaling factor. In practical 

implementation, the initial shift length L0 is set proportional to the signal length, typically N/4. 

The scaling factor k1 is empirically tuned within the range of 0.5 to 1 to balance sensitivity and 

stability. This adaptive approach ensures that the time-shift length L accommodates diverse 

vibration conditions, thereby enhancing correction stability. 

For each time-shift length Li, a corrected frequency fi is estimated using the TCM procedure. 

These estimates undergo statistical filtering based on a confidence threshold, comparing each fi 

against the mean of all candidate frequencies: 

 |𝑓𝑖 − 𝑓| ≤ 𝜀, 𝜀 = 𝑘2 ⋅ √
1

𝑛
∑ (𝑓𝑖 − 𝑓)2𝑛

𝑖=1 , (18) 
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where 𝑓 is the mean frequency andε is the confidence threshold. k2 is typically 1.96 for a 95% 

confidence interval, assuming a normal distribution, and n is the number of frequency estimates.  

Only frequencies within this interval are retained. The final corrected frequency fco is the 

average of valid estimates: 

 𝑓𝑐𝑜 =
1

𝑀
∑ 𝑓𝑖

𝑀
𝑖=1 , (19) 

where M is the number of valid frequency estimates.  

By integrating adaptive time-shifting and statistical refinement, ITCM significantly 

enhances the reliability of frequency estimation, effectively mitigating spectral leakage and 

signal variability. Moreover, the computational cost of ITCM is primarily dominated by FFT, 

which exhibits a complexity of O(N log N) , where N is the signal length. Additional operations, 

including temporal shifting, adaptive coefficient evaluation, and outlier elimination, scale 

linearly with N. Consequently, the overall complexity remains O(N log N), ensuring 

computational efficiency. These characteristics make ITCM particularly suitable for real-world 

low-frequency vibration scenarios characterized by non-ideal and noisy conditions. 

2.4. Calculation of motion parameters 

Using the corrected frequency obtained from ITCM, the actual displacement of the vibrating 

target is estimated based on a camera model. Leveraging the geometric projection relationship 

between object space and image space, the out-of-plane displacement Δz relative to the static 

reference position is computed as: 

 𝛥𝑧 = 𝐷(
𝑑

𝑑′
− 1) = 𝑓𝑐 ⋅ (1 +

𝐿

𝑝⋅𝑛
) ⋅ (

𝑑

𝑑′
− 1), (20) 

where n is the number of pixels corresponding to the fringe under static conditions, p is the 

pixel size of the camera sensor and fc is the focal length of the camera. 

This formulation enables precise recovery of the displacement over time, with the resulting 

displacement signal Δz(t) exhibiting a quasi-sinusoidal waveform for systems under harmonic 

excitation. 

To enhance accuracy and suppress high-frequency noise, SAM is applied, which fits the 

extracted displacement signal to a sinusoidal function: 

 𝑧̃(𝑡) = 𝐴𝑚 𝑠𝑖𝑛( 2𝜋𝑓𝑐𝑜𝑡 + 𝜙), (21) 

where Am is the estimated peak displacement amplitude and fco is the corrected frequency from 

ITCM. The fitting is performed using nonlinear least squares optimization. 

Finally, the acceleration is derived by computing the second-order derivative of the fitted 

displacement curve. This process completes the extraction of all motion parameters, including 

displacement, frequency, and acceleration, by the proposed measurement method. 

3. Experiments and result analyses 

To achieve accurate measurement of motion parameters in low-frequency shakers, this study 

develops a monocular vision-based vibration measurement system. The system architecture, 

depicted in Fig. 5, comprises three core components: (1) a high-contrast characteristic marker, 

(2) image acquisition unit, and (3) a data processing unit. 
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Fig. 5. Schematic diagram and physical prototype for monocular vision-based motion parameter measurement 

During operation, a controller drives the shaker to produce vibrational motion at predefined 

frequencies and amplitudes. Custom-designed fringe markers, securely affixed to the shaker’s 

surface, serve as visual references that mirror the shaker’s dynamic motion. A high-resolution 

camera continuously captures image sequences of the moving fringe patterns. These frames are 

transmitted to a computer system, where advanced image processing algorithms extract 

temporal variations in fringe density, a critical indicator of the shaker’s displacement and 

frequency characteristics. By analyzing these variations using ITCM, the system accurately 

computes essential vibration parameters, including displacement amplitude, frequency, and 

acceleration. 

The low-frequency shaker used in the experiments is capable of generating sinusoidal 

excitations with a frequency range of 0.01 Hz–10 Hz and a maximum displacement amplitude 

of 250 mm, effectively simulating low-frequency motion scenarios commonly encountered in 

structural diagnostics and calibration applications. To capture image sequences of the marker's 

motion during vibration, a high-performance CMOS camera (model: boA5120-150cm) with a 

resolution of 25 megapixels and a pixel size of 2.5 µm × 2.5 µm is employed. This imaging 

setup is critical for detecting subtle variations in fringe density induced by the shaker’s motion, 

which are subsequently analyzed to extract precise displacement and frequency data. 

3.1. Robustness verification 

To assess the robustness of ITCM under variable imaging conditions, an experiment is 

designed in which the marker is kept completely stationary while the illumination level is 

gradually adjusted from dim to bright, as shown in Fig. 6. This experimental scenario simulates 

practical conditions where ambient lighting fluctuations or camera exposure adjustments cause 

significant contrast variations in fringe patterns, potentially compromising the accuracy of 

frequency-domain processing and fringe density estimation. By conducting measurements in 

the absence of motion, the experiment isolates illumination as the sole disturbance factor, 

enabling a direct evaluation for the robustness of each method. 

The fringe density signals obtained under different illumination levels are processed using 

energy center correction method (ECCM), TCM, and ITCM. The comparison results are 

presented in Fig. 7. As illumination increases from dark to bright conditions, both ECCM and 

conventional TCM exhibit noticeable fluctuations in the estimated fringe density, particularly 

under low-contrast conditions where noise interference becomes dominant. In contrast, ITCM 

consistently maintains stable estimation accuracy throughout the entire illumination range, with 

minimal deviation from the expected stationary baseline. These findings demonstrate that 

ITCM is significantly less sensitive to illumination variations compared to ECCM and TCM, 
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ensuring reliable fringe density extraction even in measurement environments subject to 

fluctuating brightness or inconsistent imaging quality. 

 

a) b) 

  

Fig. 6. Stripe pattern illumination level from dim to bright. 

 

Fig. 7. Comparison of fringe density estimation using ECCM, TCM, and ITCM. 

3.2. Displacement measurement 

To evaluate the accuracy and reliability of the proposed monocular vision-based 

measurement method, a benchmark comparison is conducted against a traditional sensor-based 

method. The low-frequency shaker is equipped with an integrated grating ruler displacement 

sensor, a well-established and high-precision device widely used in industrial and metrological 

applications. During testing, the shaker is programmed to generate sinusoidal vibrations across 

a range of frequencies and amplitudes. Identical experimental conditions are applied to both the 

monocular vision-based system and the grating ruler, ensuring a fair and consistent basis for 

performance evaluation. 

Comparative experiments are conducted over a frequency range from 0.01 Hz to 10 Hz, 

covering ultra-low to moderate low-frequency vibration scenarios. Peak displacement values 

measured by the proposed vision-based method were compared with those obtained from the 

grating ruler sensor. The results, summarized in Table 1, demonstrate a high degree of 

consistency between the two methods. Both systems accurately matched the nominal excitation 

frequencies, with displacement amplitude errors between the vision-based method and the 

grating ruler remaining within 0.5% across all tested conditions. This result underscores the 

robustness and accuracy of the proposed method, validating its efficacy as a non-contact 

alternative for low-frequency displacement measurement. 
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Table 1. Comparison of displacement and amplitude measurements using grating ruler and monocular vision. 

Given value Grating ruler Monocular vision 
Error 

F (Hz) Amp (mm) F (Hz) Amp (mm) F (Hz) Amp (mm) 

0.01 40 0.01 40.1052 0.01 40.0858 0.05% 

0.02 40 0.02 39.9887 0.02 39.9467 0.11% 

0.05 40 0.05 40.0613 0.05 40.1284 0.17% 

0.08 40 0.08 39.9945 0.08 40.0373 0.11% 

0.1 40 0.10 40.4904 0.10 40.5326 0.10% 

0.2 40 0.20 40.1058 0.20 40.1665 0.15% 

0.5 30 0.50 30.1508 0.50 30.1088 0.14% 

0.8 19 0.80 19.3661 0.80 19.4062 0.21% 

1 15 1.00 15.5277 1.00 15.5423 0.09% 

2 8 2.00 8.0874 2.00 8.0833 0.05% 

5 3 5.00 2.9965 5.00 3.0013 0.16% 

8 1.9 8.00 1.8942 8.00 1.8970 0.15% 

10 1.5 10.00 1.4952 10.00 1.5007 0.37% 

3.3. Acceleration measurement 

To assess the accuracy and reliability of the proposed monocular vision-based method for 

measuring motion acceleration, a comparative analysis is conducted against a traditional 

acceleration sensor under identical experimental conditions. An MSV3100A-10 acceleration 

sensor, depicted in Fig. 8, is used as the reference device owing to its established sensitivity 

and reliability in low-frequency vibration testing.  

The shaker is subjected to sinusoidal excitations identical to those used in the displacement 

experiments, with both the monocular vision-based method and the reference acceleration 

sensor recording the resulting motion accelerations across a range of frequencies. The measured 

acceleration values are presented in Table 2. Both systems exhibited high accuracy in capturing 

acceleration amplitudes. 

 

 

Fig. 8. Diagram of the used acceleration sensor. 

Total harmonic distortion (THD) values are calculated to evaluate the quality of the 

acceleration signals, as THD indicates signal purity by measuring the extent of unwanted 

harmonic distortions relative to the fundamental frequency. The results show that the monocular 

vision-based method consistently achieves significantly lower THD values compared with the 
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traditional acceleration sensor, indicating its ability to capture cleaner and less distorted 

acceleration waveforms. This advantage is particularly pronounced in low-frequency 

excitations, where conventional sensors are prone to mechanical coupling effects and signal 

degradation. 

The enhanced signal fidelity of the vision-based system stems from its non-contact 

measurement principle and high spatial resolution, which minimize susceptibility to external 

noise, vibration-induced artifacts, and mechanical interference. These characteristics make the 

proposed method highly suitable for applications demanding high-precision, low-noise 

acceleration measurements, such as structural health monitoring, sensor calibration, and 

dynamic system diagnostics. 

 

Table 2. Comparison of acceleration and THD values using acceleration sensor and monocular vision 

Acceleration sensor Monocular vision 

Acc (mm/s2) THD Acc (mm/s2) THD 

16.122  16.908  16.066  0.003  

64.594  5.535  63.683  0.005  

304.047  2.382  298.356  0.006  

499.642  0.858  492.290  0.004  

626.177  1.152  616.048  0.005  

1304.296  0.800  1295.558  0.004  

3021.477  0.756  3054.106  0.004  

4894.618  0.645  4812.144  0.010  

6039.429  0.486  5971.113  0.011  

3.4. Displacement curve  

To verify the accuracy of the proposed method in measuring displacement waveforms, a 

monocular vision-based approach was employed to record the displacement responses of the 

object under several selected excitation frequencies. The measured displacement curves using 

the proposed method under low-frequency sinusoidal excitation are presented in Fig. 9. The 

results demonstrate smooth and periodic sinusoidal waveforms that closely align with the 

expected motion profiles. The near absence of waveform distortion highlights the capability of 

the proposed method to accurately capture dynamic displacement characteristics, even at very 

low frequencies where traditional systems often face challenges due to noise or resolution 

limitations. 

The aforementioned findings highlight the robustness of the proposed method in practical 

testing environments, confirming its suitability for applications requiring precise and high-

fidelity displacement measurements in low-frequency vibration scenarios. 
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Fig. 9. Displacement measurement curves at different frequencies using the proposed method. 

4. Conclusion and future work 

This study introduces a novel non-contact vibration measurement method for low-frequency 

shakers, leveraging monocular vision to analyze fringe density variations from high-contrast 

characteristic markers. The proposed method accurately extracts critical vibration parameters, 

including frequency, displacement amplitude, and acceleration. An improved time-shifting 

correcting method is developed to enhance frequency estimation precision through adaptive 

time-lapse adjustments and statistical outlier elimination. Experimental results validate the high 

accuracy of the proposed method, achieving displacement errors within 0.5% and lower total 

harmonic distortion in acceleration measurements, particularly at frequencies below 1 Hz. The 

proposed also demonstrates robust stability, surpassing traditional acceleration sensors in low-

frequency scenarios. Future work will explore extending the proposed method to multi-axis 

vibration analysis and its application in fields, such as structural health monitoring, non-

destructive testing, and precision equipment diagnostics.  
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