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Abstract 

Maximum Power Point Tracking (MPPT) is essential for optimizing the efficiency of photovoltaic (PV) systems. 

Selecting the appropriate MPPT algorithm allows for better utilization of solar energy. Under Partial Shading 

Conditions (PSC), the power-voltage (P-V) curve becomes nonlinear, leading to multiple Local Maximum Power 

Points (LMPP), which complicates the identification of the Global Maximum Power Point (GMPP) and reduces 

system efficiency. This paper reviews and classifies MPPT methods into four categories: classical, metaheuristic, 

artificial intelligence-based, and hybrid. These approaches are compared in terms of tracking accuracy, speed, 

adaptability to changing conditions, and robustness. Special focus is placed on methods that maintain performance 

under PSC, minimizing energy losses and improving system stability. The goal is to highlight the strengths and 

limitations of each method and suggest directions for further optimization to enhance the reliability and overall 

efficiency of PV systems in real-world conditions. 
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1. Introduction 

Photovoltaic (PV) systems play a crucial role in the energy transformation process, serving 

as one of the most significant renewable energy sources. Their popularity stems from the 

possibility of converting solar radiation into electrical energy in an environmentally friendly 

and economically viable manner. Despite numerous advantages, such as long lifespan and 

modular construction, PV systems exhibit variable performance dependent on external 

conditions, component quality, and control strategy selection. To achieve the highest possible 

energy output, it is essential to employ Maximum Power Point Tracking (MPPT) algorithms, 

which ensure optimal operating parameters of PV systems [1]. 

One of the primary factors affecting PV system efficiency is varying solar irradiation. The 

intensity of solar radiation directly influences the amount of generated current. Additionally, 

temperature significantly impacts module operation; an increase in temperature reduces the 

open-circuit voltage, thereby lowering the system's output power. The effectiveness of MPPT 

algorithms depends on their ability to rapidly respond to changes and minimize losses caused 

by oscillations around the Maximum Power Point (MPP) [2]. 

Under ideal weather conditions, the entire PV array is uniformly illuminated, and the power-

voltage (P-V) characteristic has a single global maximum. However, in real-world conditions, 

partial shading conditions (PSC) frequently occur, significantly reducing MPPT tracking 

efficiency. Partial shading can result from permanent obstructions, such as buildings or trees, 

or temporary disturbances like clouds, birds, or contamination on PV modules. In such cases, 
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the P-V characteristic significantly changes, as shaded cells act as loads for the remaining 

modules, leading to multiple Local Maximum Power Points (LMPP). This phenomenon 

considerably reduces energy efficiency and contributes to the formation of so-called hot spots 

[3]. 

In partial shading conditions conventional MPPT algorithms, such as Perturb and Observe 

(P&O) or Incremental Conductance (INC), may become trapped at a local maximum instead 

of identifying the Global Maximum Power Point (GMPP) [4, 5]. Consequently, to effectively 

address varying external conditions, several MPPT algorithm types have been developed. The 

first category includes metaheuristic algorithms, such as Particle Swarm Optimization (PSO), 

Genetic Algorithms (GA), and Firefly Algorithm (FA). These methods exhibit greater precision 

in GMPP tracking but require longer convergence times and greater computational resources 

[6]. Another category comprises artificial intelligence (AI): based MPPT algorithms, including 

Artificial Neural Networks (ANN), Fuzzy Logic (FL), and adaptive control systems such as 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS). These methods adapt well to changing 

conditions, although their effectiveness depends on training data quality and the system’s 

computational capacity [7]. The final group consists of hybrid algorithms, which combine the 

characteristics of different methods, thereby enhancing GMPP tracking accuracy while 

reducing oscillations around the optimal operating point [8]. 

Alongside algorithm development, advancements have also been made in measurement 

systems and data analysis methods. Research into economic solar simulators and testing 

systems for PV panels has improved access to precise laboratory measurements [7, 9]. 

Comparing MPPT techniques in terms of GMPP tracking precision and response time facilitates 

better selection of methods for various applications [10]. Solutions utilized in thermoelectric 

cell measurements may additionally provide a foundation for developing more precise data 

acquisition systems [11]. In signal analysis contexts, dimensionality reduction and feature 

selection methods have gained popularity [12, 13]. 

The purpose of this article is to review and analyze MPPT methods, with particular emphasis 

on their effectiveness under PS conditions. A classification of algorithms is presented, covering 

conventional, metaheuristic, artificial intelligence-based, and hybrid methods. Additionally, 

their ability to track GMPP, operational speed, and resilience to dynamic atmospheric 

conditions are discussed. The paper also highlights potential directions for future research 

aimed at improving the reliability and efficiency of PV systems in practical applications. 

1.1. Key Evaluation Parameters 

Tracking efficiency - the ratio of the extracted energy to the theoretically maximum 

achievable energy. 

Tracking accuracy - how precisely GMPP is found and maintained. 

Oscillation reduction - how well voltage/power fluctuations are minimized. 

Convergence time - time to reach GMPP after a change. 

Voltage stability - ability to hold steady output voltage. 

Robustness to PSC - effectiveness under partial shading and multiple local maxima. 

2. Classification of MPPT Methods 

To maximize energy use in PV systems, effective MPPT algorithms are essential. They differ 

in complexity, speed, efficiency, PSC resistance, and hardware requirements. Based on the 

analysis of literature sources, MPPT methods can be classified according to the following 

categories: 
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• Conventional methods include techniques such as P&O, INC, and Hill Climbing (HC). They 

are characterized by simplicity of implementation, low computational complexity, and 

effective operation under uniform irradiation conditions. Under partial shading, these 

algorithms often stall at a local power maximum, thus reducing energy efficiency[1, 3, 4, 14]. 

• Intelligent methods include approaches based on Artificial Neural Networks, Fuzzy Logic 

Controllers, Adaptive Neuro-Fuzzy Inference System, and Reinforcement Learning (RL). 

These algorithms are distinguished by high adaptability and good efficiency in changing 

environmental conditions, but require suitable training datasets and substantial 

computational resources [2, 15-17]. 

• Metaheuristic methods employ algorithms inspired by natural and social phenomena, such 

as Particle Swarm Optimization, Genetic Algorithm, Whale Optimization Algorithm (WOA), 

Grey Wolf Optimizer (GWO), and Salp Swarm Algorithm (SSA). These methods effectively 

bypass local maxima and reach the GMPP even under challenging PS conditions. 

Particularly, Variable Step Particle Swarm Optimization (VS-PSO) [18], Enhanced Whale 

Optimization Algorithm (EWOA) [19], and War Strategy Optimization (WSO) [20] 

demonstrate significant advantages over classical methods. 

• Hybrid methods combine features of two or more methods, such as P&O with PSO, or INC 

with ANN. They offer a better compromise between operational speed and effectiveness, 

although their implementation may be more complex and require precise parameter tuning 

[17, 20, 21]. 

2.1. Conventional vs. Intelligent Methods 

Conventional methods are employed for simple applications, particularly under uniform 

illumination conditions. For instance, the INC algorithm performs well with low dynamics of 

changing conditions but fails under PS conditions, as it cannot distinguish between local and 

global maxima [3. 8, 18]. 

Intelligent methods, on the other hand, are more flexible, adaptive, and perform better under 

disturbances (e.g., shading, temperature changes), though their effectiveness depends on input 

data quality, parameter selection, and the training process [2, 16]. 

2.2. Classification of MPPT Based on Operating Conditions 

Under uniform irradiation conditions (UIC), there is one clear maximum power point, 

making classical MPPT methods (such as P&O, INC) and simplified metaheuristic algorithms, 

like the basic version of PSO, effective [1, 3]. 

Under partial shading conditions, the power curve contains multiple local maxima, 

complicating the identification of GMPP. Therefore, advanced metaheuristic methods (EWOA, 

VS-PSO) and artificial intelligence systems (ANN, ANFIS) are most effective in such scenarios 

[20]. 

2.3. Application of MPPT in Different PV System Configurations 

Autonomous (off-grid) PV systems require simple, reliable methods with low computational 

complexity. Classical algorithms are commonly used for these applications [1, 6]. Grid-tied PV 

systems demand accuracy and rapid response to changing irradiance conditions, thus, 

algorithms that reduce oscillations and feature rapid reaction times, such as WSO, which 

stabilizes power within 0.22 s, are preferred [20]. Hybrid PV systems, however, necessitate 

flexibility and integration capabilities with other energy conversion systems. Hybrid or 
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intelligent systems capable of dynamically adjusting operating parameters are preferred here 

[19-21]. 

3. Classical MPPT Methods 

Classical MPPT methods are popular due to their simplicity, but their effectiveness decreases 

under partial shading conditions. To compare the effectiveness, complexity, and suitability of 

various classical MPPT methods for different applications, a summary is presented in Table 1 

[1-3, 6, 22]. 

 

Table 1 Advantages and disadvantages of classical maximum power point tracking methods. 

MPPT Method Advantages Disadvantages 

Efficiency under 

Partial Shading 

Conditions 

Perturb and 

Observe (P&O) 

Simple implementation, low 

computational complexity 

Oscillations around MPP, risk 

of getting stuck at a local MPP 

under PSC 

Low 

Hill Climbing (HC) 
Fast response under stable 

conditions 

High sensitivity to fluctuations, 

similar issues as in P&O 
Low 

Incremental 

Conductance (INC) 

More accurate MPP 

identification, good adaptation 

to changing conditions 

Higher computational 

complexity, potential errors in 

the presence of multiple LMPPs 

Medium 

 

Classical MPPT algorithms work well under uniform irradiation but fail under partial 

shading. This has increased interest in intelligent and metaheuristic methods. 

3.1. Perturb and Observe 

The P&O method involves periodically introducing small changes in voltage or current 

(perturbations) and then observing their effect on the output power. If the power increases, the 

perturbation continues in the same direction; if not, the direction of change is reversed. This is 

the most commonly used MPPT method; however, its drawbacks include oscillations around 

the MPP and difficulty distinguishing between local and global power maxima under PS 

conditions [1, 3, 6]. 

3.2. Hill Climbing (HC) 

The Hill Climbing method is based on searching for the maximum power point by modifying 

the inverter’s operating parameters (e.g. voltage), similar to the P&O method. However, HC 

differs in how it determines the direction of change, which is based on the sign of the derivative 

of power with respect to voltage. Its drawbacks also include oscillations and low efficiency 

under PS conditions [6, 22]. 

3.3. Incremental Conductance (INC) 

The INC method compares incremental changes in current and voltage to directly determine 

the MPP. The MPP condition is met when the ratio of the changes in current and voltage equals 

the negative conductance. Unlike P&O and HC, this method offers greater accuracy and better 
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performance under varying conditions, however, it is more computationally complex and does 

not guarantee avoidance of all local MPPs [3, 6, 22]. 

4. Intelligent MPPT Algorithms 

Intelligent MPPT algorithms utilize techniques that enable more precise tracking of the 

maximum power point and provide better adaptation of the PV system to changing conditions, 

such as partial shading. 

4.1. Artificial Intelligence (AI) Algorithms 

Compared to classical methods, artificial intelligence algorithms offer greater operational 

precision, flexibility, and resilience to rapidly changing environmental conditions [2, 6]. The 

four most commonly used AI algorithms: fuzzy logic, artificial neural networks, reinforcement 

learning, and Bayesian networks are discussed below. 

4.1.1. Fuzzy Logic Control (FLC) 

Fuzzy logic is one of the most commonly used intelligent methods in MPPT optimization 

for PV systems. The advantage of the FLC algorithm is its ability to operate effectively despite 

incomplete and imprecise input data, as well as its simple implementation based on intuitive 

decision rules [17]. FLC consists of three main stages: 

1) Fuzzification, which involves converting input variables (such as voltage, voltage change 

ΔV, current, and current change ΔI) into fuzzy values using membership functions, as 

shown in (1): 

 𝜇𝐴(𝑥): 𝑋 → [0,1] (1) 

where µA(x) is the degree of membership of element x to fuzzy set A, and X is the input 

space. 

2) Rule base, which includes a set of "if-then" rules, such as the one presented in (2): 

 If ΔP > 0 and ΔV > 0, then ΔD = positive (2) 

where ΔP is the power change, ΔV is the voltage change, and ΔD is the change in duty 

cycle. 

3) Defuzzification, which converts the fuzzy output into a crisp control value, such as the 

duty cycle (D), using the centroid method, as defined in (3): 

 𝐷 =
∑𝜇(𝐷𝑖)∙𝐷𝑖

∑𝜇(𝐷𝑖)
 (3) 

where Di is a particular duty cycle value, and µ(Di) is its membership degree according to 

the inference rules. 

FLC is characterized by good noise immunity and effective performance under changing 

environmental conditions [17][26]. 

4.1.2. Artificial Neural Networks (ANN) 

Artificial neural networks (ANN) are used to predict the optimal operating parameters of 

a PV system, especially under partial shading conditions. A typical ANN architecture consists 

of an input layer, hidden layers, and an output layer [16, 23]. The most commonly used 

activation function is the sigmoid function, as given in (4): 

 𝑓(𝑧) =
1

1+𝑒−𝑧
 (4) 
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where z is the weighted sum of the neuron's inputs. 

Training an ANN involves minimizing the MSE function (Mean Squared Error), as shown 

in (5): 

 𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1  (5) 

where yi is the actual value, �̂�i is the value predicted by the network and N denotes the number 

of samples (or observations) in the training dataset. ANN are highly effective, but they require 

a large training dataset and considerable computational power [16, 23]. 

4.1.3. Reinforcement Learning (RL) Algorithms 

Reinforcement learning algorithms optimize their performance through interaction with the 

environment and by maximizing the received reward. In photovoltaic systems, the control 

action involves modifying the duty cycle of the DC-DC converter to optimize system 

performance, and the reward is defined as the improvement in output power, as calculated by 

the given (6): 

 𝑅𝑡 = 𝑃𝑡+1 − 𝑃𝑡 (6) 

where Pt is the power at time t, and Rt is the reward obtained for taking the action. 

An RL algorithm uses the concept of 𝜋(𝑎|𝑠), defined as the probability of taking action a in 

state s, with the goal of maximizing the expected cumulative reward, expressed in (7): 

 𝑉𝜋(𝑠) = 𝐸[𝑅𝑡 + 𝛾𝑅𝑡+1 + 𝛾2𝑅𝑡+2 + ⋯ |𝑠] (7) 

where γ is the discount factor. 

Moreover, RL algorithms have proven effective in adapting to dynamic changes in irradiance 

[15]. 

4.1.4. Bayesian Networks (BN) 

Bayesian Networks are graphical probabilistic models that allow the representation and 

analysis of cause-and-effect relationships. A BN defines the joint distribution of random 

variables as shown in (8): 

  𝑍 = 𝑍1, … , 𝑍𝑛: 𝑃(𝑍) = ∏ 𝑃(𝑍𝑖|𝑃𝑎(𝑍𝑖))
𝑛
𝑖=1  (8) 

where Pa(Zi) denotes the parent nodes of the random variable Zi and n denotes the number of 

random variables. 

In the context of MPPT, Bayesian Networks can be used to predict the optimal operating 

point based on measurements of voltage, current, temperature, and irradiance, while accounting 

for measurement uncertainties [20, 25]. Their main advantage lies in the ability to integrate 

available information and operate effectively under incomplete data conditions. 

4.2. Metaheuristic MPPT Methods 

Metaheuristic methods for MPPT are essential due to their ability to effectively search for 

GMPP, especially under partial shading conditions where classical methods often fail because 

of the presence of multiple local maxima [24]. 

4.2.1. Particle Swarm Optimization (PSO) Algorithm 

The Particle Swarm Optimization algorithm is inspired by the social behavior of birds and 

fish moving in flocks or schools [24]. Each particle in the solution space represents a possible 

operating point of the PV system. The particle's position and velocity are updated according to 

(9) and (10) [18, 24]: 
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 𝑣𝑖(𝑡 + 1) = 𝑤 ∙ 𝑣𝑖(𝑡) + 𝑐1 ∙ 𝑟1 (𝑝𝑖
𝑏𝑒𝑠𝑡 − 𝑞𝑖(𝑡)) + 𝑐2 ∙ 𝑟2 (𝑔𝑖

𝑏𝑒𝑠𝑡 − 𝑞𝑖(𝑡)) (9) 

 𝑞𝑖(𝑡 + 1) = 𝑞𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (10) 

where 𝑣𝑖(𝑡 + 1) is the new velocity of the particle, 𝑞𝑖(𝑡 + 1) is the new position of the particle, 

w is the inertia weight balancing exploration and exploitation, c1 and c2 are acceleration 

coefficients regulating the influence of the personal and global best solutions, r1 and r2 are 

random numbers in the range (0,1), 𝑝𝑖
𝑏𝑒𝑠𝑡 is the best local solution found by the particle, and 

𝑔𝑖
𝑏𝑒𝑠𝑡 is the best global solution found by the entire swarm. 

PSO effectively selects PV operating points through dynamic velocity adjustment. It reduces 

the time to reach the GMPP and improves tracking accuracy by approximately 9.8% compared 

to classical methods [18]. 

4.2.2. Genetic Algorithm (GA) 

The Genetic Algorithm mimics the process of biological evolution: selection, crossover, and 

mutation. In this algorithm, chromosomes represent the power points of PV panels. The 

fundamental operational step is the selection of the best candidates based on the fitness function 

(output power of the PV system), defined in (11): 

 𝑓(𝑢) = 𝑃(𝑉𝑢, 𝐼𝑢) (11) 

where P denotes the power generated at voltage Vu and current Iu for chromosome u [15]. 

Crossover and mutation processes enable more effective exploration of the solution space, 

preventing the algorithm from getting stuck in local power maxima. GA improves the 

classification accuracy of the GMPP due to better diversity within the population of candidate 

points, which translates into enhanced MPPT stability under shading conditions by up to 5-7% 

[15, 21]. 

4.2.3. Ant Colony Optimization (ACO) 

The Ant Colony Optimization algorithm is inspired by the behavior of ants discovering paths 

to food by leaving pheromone trails. Each path represents a potential PV operating point. The 

probability of an ant selecting a given path is calculated using (12) [26]: 

 𝑃𝑖𝑗 =
𝜏𝑖𝑗
𝛼 ∙𝜂𝑖𝑗

𝛽

∑ 𝜏𝑖𝑘
𝛼 ∙𝜂

𝑖𝑘
𝛽

𝑘∈𝑁𝑖

 (12) 

where 𝜏𝑖𝑗 is the pheromone intensity on the path from point i to j, 𝜂𝑖𝑗 is a heuristic related to 

the distance from the optimal point, α and 𝛽 are algorithm parameters controlling the influence 

of pheromones and heuristics, and Ni is the set of available neighboring points. 

ACO effectively selects the best paths (PV operating points), increasing the accuracy of the 

search around the global maximum and improving the classification of its tracking by up to 

10% compared to classical MPPT methods [25, 26]. 

4.2.4. Grey Wolf Optimizer (GWO) 

The Grey Wolf Optimizer algorithm reflects the social hierarchy of a wolf pack, consisting 

of leaders (alpha, beta, delta). The wolf's position (solution) is updated using (13) and (14) [20, 

25]: 

 �⃗⃗� = |𝐶 ∙ �⃗� 𝑝(𝑡) − �⃗� (𝑡)| (13) 

 �⃗� (𝑡 + 1) = �⃗� 𝑝(𝑡) − 𝐴 ∙ �⃗⃗�  (14) 
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where �⃗� 𝑝 represents the position of the alpha, beta, or delta leader, and 𝐴  and 𝐶  are coefficients 

that regulate the movement of wolves around the leaders. The vector �⃗⃗�  describes the difference 

between the position of the wolf and that of the leader (alpha, beta or delta), scaled by the 

coefficient 𝐶 . It determines how far and in which direction the wolf should move to approach 

the leader during the optimization process. 

The GWO algorithm demonstrates high accuracy in classifying the Global Maximum Power 

Point, while also reducing tracking time and minimizing the risk of premature convergence. 

Thanks to hierarchical leader selection, it improves MPPT stability by approximately 30% 

compared to standard techniques [20]. 

4.2.5. Firefly Algorithm (FA) 

The Firefly Algorithm is inspired by the behavior of fireflies, which attract one another based 

on the intensity of emitted light. In the MPPT context, the light intensity symbolizes the power 

output of the PV system. The attractiveness between two fireflies is calculated using (15) [17, 

24]: 

 𝛽(𝑟) = 𝛽0𝑒
−𝛾𝑟2

 (15) 

where 𝛽0 is the initial attractiveness, 𝛾 is the light absorption coefficient, and 𝑟 is the distance 

between two fireflies. 

FA enables more effective exploration of the solution space, particularly in scenarios 

involving multiple local power maxima. Studies indicate that applying FA increases the 

classification accuracy of the global power maximum from around 83% to as much as 96.5%, 

especially under dynamic lighting conditions [17]. 

4.3. Algorithms Inspired by Physical Phenomena 

Algorithms inspired by physical phenomena represent a group of methods that mimic natural 

processes such as metal annealing, gravity, or airflows. Their application in MPPT systems 

allows for more effective identification of GMPP, especially under variable operating 

conditions. 

4.3.1. Simulated Annealing (SA) 

The Simulated Annealing (SA) algorithm is inspired by the physical process of annealing in 

metals, where the operating points of the PV system are treated as energy states that are 

gradually explored to identify the GMPP. SA enables the algorithm to escape local extrema by 

randomly selecting new operating points, even if they momentarily yield lower performance 

thereby increasing the chances of reaching the global optimum [8]. 

The probability of accepting a new solution is defined in (16): 

 𝑃(𝛥𝑃, 𝑇) = {
1, 𝑖𝑓 𝛥𝑃 ≥ 0

𝑒
𝛥𝑃

𝑇 , 𝑖𝑓 𝛥𝑃 < 0
 (16) 

where 𝛥𝑃 is the change in power (the difference between the new and the previous solution), 

and T represents the system temperature, which decreases progressively with each iteration. 

In the early stages, high temperature allows the algorithm to explore a broad solution space, 

while in later stages, as the temperature lowers, the search becomes more refined and focused 

on locating the global maximum [8, 15]. Implementing SA in MPPT applications can increase 

the accuracy of MPP classification by approximately 15-20% compared to conventional 

methods [8]. 
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4.3.2. Gravitational Search Algorithm (GSA) 

The Gravitational Search Algorithm is based on Newton’s law of gravity. In this approach, 

each solution (an operating point of the PV system) is treated as a mass that attracts other masses 

in proportion to its objective function value, which in this case represents the generated power. 

The mass of a solution 𝑚𝑖(𝑡) is calculated according to (17): 

 𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡)−𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑓𝑖𝑡𝑏𝑒𝑠𝑡(𝑡)−𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡(𝑡)
 (17) 

where 𝑓𝑖𝑡𝑖(𝑡) denotes the current objective function value of solution i, and 𝑓𝑖𝑡𝑏𝑒𝑠𝑡(𝑡) and 

𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡(𝑡) are the best and worst objective function values in the current iteration, respectively 

[14]. 

Each solution updates its position (operating point) under the influence of the gravitational 

force exerted by better solutions in the population, enabling effective exploration of the search 

space to locate the global maximum. The application of GSA in MPPT can improve the GMPP 

identification accuracy from approximately 85-90% to around 95-98%, particularly under 

variable irradiance conditions [14][23]. 

4.3.3. Wind-Driven Optimization (WDO) 

The Wind-Driven Optimization algorithm mimics the dynamic behavior of air in the 

atmosphere, where solutions are treated as air particles moving under the influence of wind 

pressure and turbulence. The position of a solution is updated using (18): 

 𝑠𝑖
(𝑡+1)

= 𝑠𝑖
(𝑡)

+ 𝑣𝑖
(𝑡+1)

∙ 𝛥𝑡 (18) 

where 𝑠𝑖
(𝑡)

 represents the position (operating point) of the solution in iteration t, and 𝑣𝑖
(𝑡+1)

 is 

the velocity of the solution, updated based on local pressure differences, turbulence effects, and 

gravitational coefficients [27]. 

In partial shading conditions, WDO demonstrates excellent performance in locating the 

GMPP, achieving an accuracy of approximately 97%, which contributes significantly to the 

overall increase in generated power [25, 27]. 

4.4. Social Behavior-Inspired Algorithms 

Social behavior-inspired algorithms leverage models of human interaction, learning, or 

culture to solve optimization problems. 

4.4.1. Teaching-Learning-Based Optimization (TLBO) 

The TLBO algorithm is modeled on the classroom learning process, where a teacher imparts 

knowledge to students. It operates in two phases: the teaching phase and the learning through 

interaction phase. During the teaching phase, the student’s position is updated using (19): 

 𝐻𝑖
𝑛𝑒𝑤 = 𝐻𝑖 + 𝑟(𝐻𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝐹 ∙ �̅�) (19) 

where 𝐻𝑖 is the current position of student i, 𝐻𝑡𝑒𝑎𝑐ℎ𝑒𝑟 is the position of the best individual 

(teacher), �̅� is the average position of the population, 𝑇𝐹 is the teaching factor (typically 1 or 

2), and 𝑟 is a random numer 𝑟 ∈ [0,1]. 
In the second phase, students learn from each other by adjusting their positions based on 

randomly selected peers [16]. According to literature results, the application of TLBO in MPPT 

has improved GMPP tracking efficiency from 91.4% to 96.2% under PSC [16]. 
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4.4.2. Human Psychology Optimization Algorithm (HPO) 

The Human Psychology Optimization algorithm is based on modeling psychological 

behaviors of individuals who aim to improve their position through imitation and avoidance of 

negative emotions. In MPPT applications, agents learn from their own past experiences and the 

outcomes of other individuals. HPO considers factors such as inspiration, frustration, and 

ambition. The agent's position is updated using (20): 

 𝑏𝑖(𝑡 + 1) = 𝑏𝑖(𝑡) + 𝛼(𝑏𝑏𝑒𝑠𝑡 − 𝑏𝑖(𝑡)) + 𝛽(𝑏𝑟𝑎𝑛𝑑 − 𝑏𝑖(𝑡)) (20) 

where 𝑏𝑖(𝑡) is the current position of the agent, 𝑏𝑏𝑒𝑠𝑡 is the position of the best-performing 

agent, 𝑏𝑟𝑎𝑛𝑑 is the position of a randomly selected agent, and α and 𝛽 are coefficients 

representing the emotional intensity. HPO demonstrates strong robustness to changing PV 

operating conditions and exhibits faster convergence compared to PSO and ACO [17]. 

4.4.3. War Strategy Optimization Algorithm (WSO) 

The War Strategy Optimization algorithm is inspired by battlefield tactics and incorporates 

roles such as king (best agent), commander (second-best), and soldiers (remaining agents). This 

algorithm employs two main strategies: offensive (attack) and defensive (defense), along with 

dynamic adjustment of agent weights and ranks to avoid local optima. The agent's movement 

during an attack is defined in (21) [20]: 

 𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + 2𝜌(𝐶 − 𝐾) + 𝑟𝑎𝑛𝑑 ∙ (𝑊𝑖 ∙ 𝐾 − 𝑚𝑖(𝑡)) (21) 

where 𝐶 is the commander's position, 𝐾 is the king's position, 𝑊𝑖 is the soldier's weight, and 𝜌 

and 𝑟𝑎𝑛𝑑 are random coefficients. 

In the defensive strategy, the movement is described in (22): 

 𝑎𝑖(𝑡 + 1) = 𝑎𝑖(𝑡) + 2𝜌(𝐾 − 𝑎𝑟𝑎𝑛𝑑) + 𝑟𝑎𝑛𝑑 ∙ 𝑊𝑖(𝐶 − 𝑎𝑖(𝑡)) (22) 

where 𝑎𝑖(𝑡) is a current position of the i-th agent in defense mode, 𝐾 is is the king's position, 

𝑎𝑟𝑎𝑛𝑑 is position of a randomly selected agent from the population, 𝐶 is the commander's 

position, 𝑊𝑖 is the soldier's weight and 𝜌 and 𝑟𝑎𝑛𝑑 are random coefficients. 

Studies conducted under four different shading scenarios have shown that WSO achieved 

the highest dynamic accuracy, up to 98%, the shortest convergence time of approximately 0.21 

seconds, and significantly reduced voltage fluctuations compared to PSO, GOA, and SSA 

algorithms [20]. 

5. Hybrid MPPT Methods 

Modern PV systems require robust MPPT algorithms, which is why hybrid solutions 

combining classical methods, AI, metaheuristics, and Field Programmable Gate Arrays 

(FPGA) based systems are gaining popularity. 

5.1. Combination of Conventional Methods with AI 

Combining classical approaches for MPPT detection, such as P&O and INC, with AI 

algorithms enables dynamic and precise adjustment of PV system operating parameters in 

response to changing environmental conditions. In his study, Hasan Gundogdu demonstrated 

the effectiveness of an ANN+GA model, in which a genetic algorithm optimized the structure 

and weights of an artificial neural network. As a result, the system was able to track the GMPP 

even in the presence of multiple local maxima, increasing classification accuracy from 89.3% 

to 96.1% [16]. 
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Makbul A.M. Ramli, on the other hand, employed an ANN to analyze P-V characteristics as 

well as temperature and irradiance variability. The network was trained offline, and during 

online testing, it achieved a GMPP detection accuracy of 96.7% [22]. 

In her work, Nikita Gupta presented a hybrid FLC+AI model, in which a fuzzy logic system 

was enhanced with a real-time mechanism for automatically modifying linguistic rules. This 

improved tracking efficiency to 96.5%, compared to 90% for a standard FLC. The system 

responded dynamically to irradiance changes, smoothly adjusting the duty cycle value [23]. 

5.2. Hybrid Metaheuristic Algorithms 

Combining metaheuristic methods with classical MPPT algorithms enhances the solution 

space exploration capabilities and improves response speed to changing external conditions. 

For example, Bo Yang applied a hybrid P&O+PSO algorithm, where the P&O method provided 

a fast response near the local operating point, while PSO was responsible for searching for 

global extrema. The tracking efficiency increased from 90.2% to 95.4%, and convergence time 

was reduced by 35% [14]. 

Silas Soo Tyokighir, in his work, described the VS-PSO algorithm, which adjusted the 

particle step amplitude depending on the optimization stage. As a result, the algorithm reached 

the GMPP in just 10 iterations, whereas standard PSO required 50 iterations. The average 

improvement in tracking accuracy increased by 9.8% compared to classical PSO [18]. 

Subhransu Sekhar Dash, on the other hand, described the Enhanced Whale Optimization 

Algorithm, which distinguishes between local and global power maxima using dynamic 

“encircling target” strategies. EWOA improved MPP tracking efficiency by approximately 4-

5% in a 1000W system compared to classical PSO and WOA [19]. 

5.3. Integration of MPPT with Reconfigurable FPGA Systems 

FPGA systems are becoming increasingly popular in MPPT applications due to their ability 

to perform parallel, fast, and reliable computations. In her study, Pallavee Bhatnagar presented 

a fuzzy logic controller implemented on an FPGA, which achieved a response time of 

approximately 0.1 seconds and high output voltage stability. Under dynamic conditions such as 

passing clouds, the system automatically adjusted the operating point in real time [24]. 

Meanwhile, Nikita Gupta introduced the implementation of an ANFIS structure on FPGA. 

The use of parallel data processing enabled real-time updates of rules and weights in response 

to changes in irradiance. The system operated at a sampling frequency of 40 kHz, allowing for 

a very rapid reaction to external environmental changes [23]. 

Hasan Gundogdu, on the other hand, described an integrated ANN+GA algorithm on an 

FPGA platform, which allowed real-time weight adjustments within the neural network. The 

adaptation time was reduced by over 60% compared to a classical implementation. As a result, 

the system achieved a GMPP tracking efficiency exceeding 97% [16]. 

6. MPPT under Partial Shading Conditions (PSC) 

Partial shading leads to uneven illumination across the surface of photovoltaic panels, 

resulting in the appearance of multiple LMPPs on the P-V characteristic. This effect is caused 

by the activation of bypass diodes in PV modules, which leads to a “stepped” I-V curve and the 

presence of multiple power peaks on the P-V curve [18, 20]. As demonstrated in research, 

classical algorithms such as P & O and INC tend to get stuck at local extrema, which can cause 

power losses of up to 20-25% under variable sunlight conditions [6, 18]. 
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For example, Tummala Ayyarao showed that under shading conditions, a PV system 

consisting of three series-connected panels exhibited different local MPPs at voltages of 22.4 

V, 33.3 V, and 38 V, of which only one corresponded to the actual GMPP, delivering 94.16 W. 

Conventional algorithms typically selected the first local point, which was 6-10 W lower in 

power, thus reducing system efficiency [20]. 

Detecting PS conditions is essential for selecting an appropriate MPPT algorithm. Tummala 

Ayyarao proposed a segmented analysis of the P-V curve, allowing the detection of voltage 

discontinuities as indicators of shading [20]. Alternatively, Muhammed Y. Worku and Makbul 

A.M. Ramli presented approaches based on neural networks that learn shading patterns from 

historical data and real-time measurements of irradiance and temperature [15, 22]. These 

methods achieved over 95% accuracy and demonstrated significantly faster response times 

compared to classical algorithms [16]. 

AI algorithms such as ANN, FLC and ANFIS allow for adaptive control of the duty cycle in 

response to changes in irradiance [16, 22, 23]. Makbul A.M. Ramli implemented an ANN 

trained on a dataset containing P-V characteristics, temperature, and irradiance levels, 

achieving GMPP detection accuracy exceeding 96.7% [22]. The FLC algorithm used by Nikita 

Gupta improved tracking efficiency from 85-90% to 95-97%, while reducing the average 

convergence time by approximately 0.5 seconds compared to classical approaches [23]. 

Evolutionary algorithms such as PSO, GA, WOA, and WSO effectively explore the solution 

space in the presence of multiple local extrema. Silas Soo Tyokighir applied VS-PSO, which 

reached the GMPP of 61 W in just 10 iterations (0.3 s), while standard PSO required 50 

iterations and achieved only 55-58 W. This resulted in a 9.8% increase in tracking efficiency 

[18]. The WSO algorithm, inspired by military strategies, achieved an average efficiency of 

96.8-98% under PS conditions, with a convergence time of just 0.21 s, much faster than GOA 

(0.76 s) and SSA (0.4 s) [20]. 

Bo Yang, in his study, presented a hybrid PSO+P&O algorithm, in which PSO explored the 

solution space following preliminary analysis by P&O, reducing GMPP tracking time by 35% 

compared to standalone methods [14]. Hasan Gundogdu described an ANN model supported 

by GA, where the genetic algorithm optimized neural weights in real time, increasing tracking 

efficiency from 89.3% to 96.1% [16]. Meanwhile, the EWOA algorithm applies a “target 

encircling” strategy, where weaker solutions are discarded and the population converges around 

the best candidate, resulting in improved accuracy from 90.1% to 95.7% [19]. Hybrid 

approaches also allow for faster adaptation to changes in PSC without requiring full retraining 

of the model, making them more practical for real-time systems. 

7. Comparison and Performance Analysis of MPPT Methods 

This chapter compares the most important MPPT methods in terms of performance. The 

evaluation includes GMPP tracking efficiency, convergence time, voltage stability, 

implementation cost and complexity, and resistance to partial shading. 

7.1. Energy Efficiency of Various Techniques 

The Table 2 presents a comparison of algorithms in terms of maximum power point tracking 

efficiency and average convergence time for MPPT methods, based on the analysis of literature 

sources [6, 7, 14, 16, 18-20, 23, 25], where MPPT algorithms were implemented on various 

hardware platforms. Classical methods (P&O, INC) were mainly tested on microcontrollers 

(e.g., STM32, Arduino), while metaheuristic and AI algorithms (e.g., PSO, ANN, RL) were 

evaluated in MATLAB/Python environments on computers with i7/i9 processors and GPUs. 
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Some studies also used FPGA systems. The presented values are average results from 

simulations and experiments. 

 

Table 2 Comparison of MPPT algorithms in terms of maximum power point tracking efficiency and GMPP 

convergence time. 

MPPT Algorithm 
GMPP Efficiency 

[%] 

Average Convergence 

Time [s] 

Perturb and Observe (P&O) 85-90 ~1.5 

Incremental Conductance (INC) 88-91 ~1.2 

Particle Swarm Optimization (PSO) 91-93 ~1.0 

Variable Step Size Particle Swarm Optimization (VS-PSO) 98.3 ~0.3 

Genetic Algorithm (GA) 93-95 ~0.6 

War Strategy Optimization (WSO) 98-99.97 ~0.23 

Salp Swarm Algorithm (SSA) 94.3 ~0.39 

Grasshopper Optimization Algorithm (GOA) 93.9 ~0.75 

Artificial Neural Network (ANN) 96.7 ~0.4 

Fuzzy Logic Controller (FLC) 95.2 ~0.5 

Adaptive Neuro-Fuzzy Inference System (ANFIS) 96.1 ~0.45 

Enhanced Whale Optimization Algorithm (EWOA) 96.9 ~0.37 

Teaching-Learning-Based Optimization (TLBO) 94.4 ~0.42 

Human Psychology-Based Optimization (HPO) 93.5 ~0.48 

 

Metaheuristic and AI-based algorithms like VS-PSO and WSO offer the highest GMPP 

tracking efficiency and fastest convergence. 

7.2. Implementation Cost and Complexity 

The Table 3 presents a comparison of algorithms in terms of implementation complexity, 

deployment cost, and hardware requirements [6, 7, 16, 19, 20, 22, 23, 25]: 

 

Table 3 Comparison of MPPT algorithms in terms of implementation complexity, deployment costs, and 

hardware requirements. 

MPPT Algorithm 
Implementation 

Complexity 

Deployment 

Cost 

Hardware 

Requirements 

Perturb and Observe (P&O) Low Low 
Microcontroller 

Unit (MCU) 

Incremental Conductance (INC) Low Low MCU 

Particle Swarm Optimization (PSO) Medium Medium 
DSP (Digital Signal 

Processor) or MCU 

Genetic Algorithm (GA) Medium Medium MCU or FPGA 

War Strategy Optimization (WSO) High High FPGA / DSP 

Salp Swarm Algorithm (SSA) Medium Medium MCU 

Artificial Neural Network (ANN) High High Memory + Processor 

Fuzzy Logic Controller (FLC) Medium Medium 
Fuzzy Controller 

Engine 

Enhanced Whale Optimization Algorithm 

(EWOA) 
High High DSP or FPGA 

Teaching-Learning-Based Optimization (TLBO) Medium Medium MCU 

Human Psychology-Based Optimization (HPO) Medium Medium MCU 
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Classical methods are low-cost and easy to implement. Advanced algorithms require more 

computing power and specialized hardware. 

7.3. Stability and Adaptation Speed to Operating Conditions 

In dynamic PV conditions, stability and quick adaptation are essential [6, 16, 18, 20, 22]. 

 

Table 4 Comparison of MPPT models in terms of voltage stabilization time, oscillation reduction level, and 

resistance to variable external conditions (mainly PSC). 

MPPT Algorithm 
Voltage Stabilization 

Time [s] 

Oscillation 

Reduction [%] 

Robustness to 

PSC 

Particle Swarm Optimization (PSO) ~1.2 ~25 Medium 

Variable Step Size Particle Swarm 

Optimization (VS-PSO) 
~0.3 ~65 High 

War Strategy Optimization (WSO) ~0.22 ~70 Very High 

Artificial Neural Network (ANN) ~0.4 ~50 High 

Adaptive Neuro-Fuzzy Inference 

System (ANFIS) 
~0.45 ~55 High 

Salp Swarm Algorithm (SSA) ~0.39 ~60 High 

 

VS-PSO and WSO stand out for voltage stability, oscillation reduction, and strong 

robustness to partial shading conditions. 

7.4. Best MPPT Methods for Different Applications 

The selection of the optimal MPPT method depends, among other factors, on available 

computational resources, energy requirements, and operating conditions (including the 

presence of PSC). The Table 5 presents recommendations based on specific applications [6, 7, 

16, 18, 20, 24]: 

 

Table 5 Comparison of algorithms based on recommended MPPT method selection according to application. 

Application Recommended Algorithms 

Autonomous systems (off-grid) Perturb and Observe (P&O), Incremental Conductance (INC) 

Residential and commercial systems Particle Swarm Optimization (PSO), VS-PSO, ANN 

Industrial systems War Strategy Optimization (WSO), EWOA, ANFIS 

PSC / dynamic condition scenarios WSO, VS-PSO, FLC+ANN, TLBO 

FPGA / high-performance systems WSO+FPGA, GA+ANN, ANFIS 

 

Algorithm selection depends on the application, from simple methods for off-grid systems 

to advanced hybrid techniques for industrial setups. 

8. Conclusions 

The dynamic development of PV systems and the growing demand for efficient, renewable 

energy sources have made Maximum Power Point Tracking a crucial area of focus. The aim of 

this article was to analyze contemporary MPPT methods, particularly in the context of PSC, 

which are one of the main causes of energy losses in PV systems. The study compares four 

main groups of methods: classical, metaheuristic, artificial intelligence-based, and hybrid, 
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evaluating them in terms of efficiency, stability, implementation complexity, and adaptability 

to changing environmental conditions. 

The collected results indicate that classical algorithms, such as P&O and INC, although still 

widely used due to their simplicity and low cost, exhibit low effectiveness under PSC. Their 

susceptibility to getting stuck at local maxima means their energy efficiency rarely exceeds 

90%, and the convergence time to the operating point often surpasses 1.2-1.5 seconds. 

Significant progress has been observed with algorithms inspired by natural and social 

phenomena. Methods such as PSO, EWOA, and WSO successfully avoid local extrema and 

focus on searching the solution space toward the GMPP. For instance, WSO achieved a tracking 

efficiency of 98-99.97% and a convergence time of less than 0.25 seconds, and it is also 

characterized by high noise resistance and output voltage stability. 

Artificial intelligence-based algorithms, such as ANN, FLC, and ANFIS, demonstrated 

excellent adaptability to varying environmental conditions. Studies have shown that ANN 

trained on P-V and irradiance data reached an efficiency of over 96.7%, while FLC and ANFIS 

achieved 95.2% and 96.1%, respectively. However, their implementation requires considerable 

computational resources, adequate training data, and model validation tools. Nonetheless, they 

are well-suited for operation in dynamically changing conditions with numerous local MPPs. 

Hybrid MPPT approaches proved effective by combining the strengths of different method 

categories. Integrating classical algorithms with AI (e.g. ANN+GA, FLC+ANN) or 

metaheuristics (e.g. PSO+P&O, VS-PSO) enabled high tracking efficiency while reducing 

convergence time and minimizing voltage oscillations. For example, applying VS-PSO reduced 

the number of iterations required to reach the GMPP from 50 to 10 and increased system output 

by nearly 10%. 

Based on the analysis, simple classical algorithms are effective for low-cost and autonomous 

systems under uniform irradiance. For commercial and industrial installations operating under 

PSC, intelligent or hybrid methods are more suitable. In embedded systems (e.g., FPGA), 

advanced AI algorithms with real-time learning are recommended. 

Despite the advantages of modern MPPT methods, challenges remain, such as algorithm 

complexity, the need for parameter adjustment, and integration with energy management 

systems. In commercial applications, compatibility and standardization are also important. 

Future research should focus on the development of next-generation hybrid algorithms that 

integrate classical, metaheuristic, and AI elements into a self-learning, multi-stage decision-

making model. Emphasis should also be placed on online learning algorithms that allow 

dynamic adaptation of MPPT strategies without the need for retraining. 

In summary, the effectiveness of MPPT in modern PV systems depends on selecting the 

right method for the operating conditions and application. Only a comprehensive approach 

ensures maximum energy output, stability, and system reliability. 
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