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Abstract 

Sleep apnea is a sleep disorder that can lead to serious health consequences. Its detection and differentiation 

between type: obstructive (OSA), central (CSA), and mixed (MSA) is crucial for selecting appropriate therapy. 

The aim of this study was to compare three feature selection methods: Particle Swarm Optimization (PSO), 

Neighborhood Component Analysis (NCA), and Principal Component Analysis (PCA) in the context of detecting 

sleep apnea and its types using single-channel EEG signals. In the study, EEG signals were preprocessed, divided 

into 30-second segments, and analyzed using a two-stage feature extraction approach. Feature selection methods 

(PSO, NCA, and PCA) were then applied to reduce data dimensionality and identify the most informative 

parameters. Parameter optimization was also conducted for each method. Classification was performed using the 

k-NN algorithm. The results showed that the PSO method achieved the highest average classification accuracy of 

98.03%, reducing the number of features from 379 to 134, while NCA achieved an accuracy of 97.96%, reducing 

the number of features from 424 to 127. Although PCA was effective in dimensionality reduction, it achieved 

a lower accuracy of 85.56%. The applied methods enabled clear differentiation between normal breathing and 

sleep apnea episodes, with classification errors occurring only in distinguishing between apnea types. 

Keywords: single-channel EEG, sleep apnea detection, feature selection method, optimization of signal processing, 

medical decision support. 

1. Introduction 

Sleep is essential for the body's regeneration, allowing for rest and restoring balance 

necessary for healthy functioning. One of the most common respiratory disorders occurring 

during sleep is sleep apnea, characterized by periodic and cyclical breathing disturbances, 

which may manifest as a reduction in amplitude (hypoventilation) or complete cessation of 

breathing (apnea). This leads to sleep fragmentation and a decrease in sleep quality, negatively 

impacting health. The three main types of sleep apnea are: obstructive sleep apnea (OSA), 

central sleep apnea (CSA), and mixed sleep apnea (MSA). OSA is caused by a physical 

blockage of the upper airway despite continued respiratory muscle activity. In the case of CSA, 

the problem lies in the lack of a signal from the brain’s respiratory center, resulting in 

a temporary pause in breathing. MSA combines features of both types and may present a more 

complex clinical course [1, 2]. 

The most commonly performed examination for assessing sleep quality and diagnosing sleep 

disorders is polysomnography (PSG). This method involves the simultaneous recording of 

multiple biomedical signals during sleep, which is why the examination takes place in a 

specially adapted laboratory. The most frequently recorded signals during PSG include the 

electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG), and 

electrooculogram (EOG). The analysis of these data enables the assessment of sleep quality 
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and the calculation of indices such as the apnea index (AI) and the apnea-hypopnea index (AHI) 

[1-3]. 

Research on sleep and respiratory disorders requires not only monitoring biological 

processes but also advanced data analysis and modeling, which facilitates a better 

understanding of their mechanisms. The use of modeling and simulation methods based on 

metrology principles enables a detailed analysis of EEG signals. By applying direct and inverse 

analysis methods, it is possible to gain deeper insight into distributed processes and EEG signal 

characteristics, facilitating their interpretation in the context of apnea diagnosis [4-6]. 

Electroencephalography is a method of recording the brain's bioelectrical activity using 

electrodes placed on the scalp. This examination allows for the evaluation of central nervous 

system function by observing changes in the activity of specific brain waves. Typically, 19 to 

21 electrodes are used, arranged according to the 10-20 system [2]. In healthy adults, EEG 

signals enable the differentiation of delta, theta, alpha, beta, and gamma rhythms, which 

correspond to different functional states of the brain. 

Recording EEG signals during sleep has significant diagnostic importance due to the 

possibility of respiratory disorders intensifying during sleep. At night, the EEG signal shows 

an increase in delta and theta waves, as well as the appearance of sleep spindles and 

K-complexes. Sleep consists of two main phases: non-rapid eye movement sleep (NREM) and 

rapid eye movement sleep (REM). Normal, undisturbed sleep includes cyclical transitions 

between NREM and REM phases, with 4-5 cycles lasting approximately 90 minutes each. Each 

cycle is followed by a phase of awakening and sleep lightening, during which brief awakenings 

may occur [1, 2]. In individuals suffering from sleep apnea, EEG signals often reveal so-called 

arousals, characterized by short-term changes in signal frequency lasting from 3 to 15 seconds, 

usually occurring after apnea episodes. Another method for detecting respiratory disorders is 

the spectral power density analysis of EEG signals before, during, and after apnea episodes. 

Automated diagnostics using portable EEG recorders can therefore improve the detection 

efficiency of apnea episodes, even in home settings [7]. 

In recent years, numerous studies have examined various preprocessing, decomposition, 

feature selection, and classification methods for signals recorded during PSG to detect sleep 

apnea. However, only a small portion of these studies has focused on single-channel EEG 

analysis [8]. Most research has concentrated on distinguishing between normal breathing and 

apnea without differentiating apnea types [8, 9]. When apnea types were differentiated, the 

focus was often on obstructive apnea [8, 10]. A single-channel EEG system simplifies the 

measurement setup, increases patient comfort, and enables use in mobile, home-based 

diagnostic devices. Despite its limited spatial resolution, the applied signal processing and 

feature selection methods allow for effective detection and differentiation of sleep apnea types. 

Some studies have also utilized two symmetrical EEG channels to detect apnea types [10]. 

Differentiating apnea types (OSA, CSA, MSA) using single-channel EEG has been achieved 

in only a few studies [10]. In these, the highest binary classification accuracy using support 

vector machines (SVM) for single-channel EEG was 99.98% [11], and the lowest was 69.9% 

[12]. For the classification of three apnea types, the average accuracy ranged from 82.3% [11] 

to 88.9% [9]. 

The most common feature extraction methods for detecting sleep apnea and other 

neurological disorders included band-pass filtering (BPF) [8, 9, 13], discrete wavelet transform 

(DWT) [8, 9, 13], empirical mode decomposition (EMD) [10, 14, 15], and variational mode 

decomposition (VMD) [13]. Among two-stage methods, the Hilbert-Huang transform (HHT) 

was frequently used [10, 13]. Common feature selection methods included: minimum 

redundancy maximum relevance (MRMR) [16], linear regression [10], analysis of variance 

(ANOVA) [10], neighborhood component analysis (NCA) [9, 14], principal component 

analysis (PCA) [16] and the particle swarm optimization algorithm (PSO) [14, 17]. 
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The best average classification accuracy achieved using NCA with convolutional neural 

networks (CNN) was 93.8% [14], while PCA combined with Random Forest yielded 95.42% 

[18]. The PSO algorithm, optimized for multi-layer perceptron neural networks (MLPNN), 

achieved 97.66% [19]. Common classification methods included both traditional algorithms 

and deep learning approaches. Among traditional methods, support vector machines (SVM) 

[16], Random Forest [18], Decision Trees, and Bagged Trees [16] were widely used, along with 

k-nearest neighbors (k-NN) [16]. In deep learning, convolutional neural networks (CNN) [14] 

and artificial neural networks (ANN) [16] were dominant. 

The aim of this study was to compare three feature selection methods (PSO, NCA, and PCA) 

applied to features extracted from EEG signals for detecting sleep apnea and its types. The 

study demonstrates that applying these selection methods facilitates optimal parameter tuning 

and achieves maximum classification accuracy using the k-NN model to detect EEG epochs 

associated with normal breathing and sleep apnea episodes, including the differentiation of 

apnea types. 

2. Materials and methods 

2.1. EEG data from St. Vincent University Sleep Apnea Database 

The study utilized the University College Dublin Sleep Apnea Database, available on the 

PhysioNet platform, which contains polysomnographic recordings (EMG, EEG, ECG, EOG, 

blood oxygen saturation, and chest movements) from 25 patients aged 38–68 (4 women and 21 

men) [20]. The recorded signals were originally sampled at a frequency of 128 Hz and 

originated from two electrode locations, C3-A2 and C4-A1. For further analysis, a single-

channel EEG signal from the C3-A2 location was selected [13]. Sleep phase annotations and 

information on the onset and duration of respiratory events, including obstructive, central, and 

mixed apnea, as well as hypopnea, were provided by specialists with one-second precision. 

2.2. Approach and Methods 

The developed methodology focuses on comparing three feature selection methods using 

a dataset obtained after feature extraction from EEG signals. In the initial stage, techniques 

reported in the literature with high classification accuracy for EEG signal analysis in sleep 

studies were identified. Three feature selection methods were chosen for comparison: Particle 

Swarm Optimization (PSO), Principal Component Analysis (PCA), and Neighborhood 

Component Analysis (NCA). The input parameters for the PSO algorithm were optimized 

through sensitivity analysis to achieve the best fit. For PCA, the criterion of explaining over 

90% of the data variance was applied, as recommended in the literature. In the case of NCA, 

the optimal parameter values were determined by minimizing the loss function while testing 

various proportions of training and testing data, with a constant proportion of validation data 

[9]. The classification process was carried out using the k-nearest neighbors (k-NN) algorithm 

with 32-fold cross-validation [10]. The effectiveness of the feature selection methods was 

evaluated using Student's t-tests for independent samples at a significance level of α = 0.05, 

allowing for the determination of whether the differences between the methods were 

statistically significant. 

All analysis stages were performed in the MATLAB R2023b environment (The MathWorks, 

USA). The process included feature selection, classifier parameter optimization, and 

performance evaluation using cross-validation and statistical tests (Fig. 1). This approach 

enabled a comparison of the effectiveness of the three feature selection methods (PSO, NCA, 

PCA) in the context of detecting sleep apnea based on EEG signals. 
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Fig. 1. The adopted method for processing a single-channel EEG signal (explanations of abbreviations can be 

found in the text). 

2.3. Preprocessing 

To reduce noise in the EEG signal, low-pass filtering was applied using a second-order 

Chebyshev type II filter with a cutoff frequency of 45 Hz, along with notch filtering at 50 Hz 

and 60 Hz (second-order filter) to eliminate power line interference. Signal segments with 

amplitudes exceeding threshold values, defined as outliers based on z-score statistics were 

removed together with saturation artifacts. The data were then standardized and detrended to 

normalize their energy characteristics and minimize the influence of external noise sources [21]. 

The signals were divided into 30-second segments, taking into account respiratory events 

lasting more than 10 seconds. In the case of shorter segments, the missing data were 

supplemented with normal breathing signal, while longer segments were trimmed to 30 seconds 

to maintain a uniform epoch length. Finally, the data were classified into three groups: normal 

breathing (NB), obstructive apnea/hypopnea (OSA), and central apnea/hypopnea (CSA). To 

ensure balance between the classes, the number of epochs was equalized based on the smallest 

available group. Each class (NB, OSA, CSA) contained 1373 epochs, resulting in a total of 

4119 epochs used for further analysis [10]. 

2.4. Feature extraction 

Feature extraction from EEG signals was performed in two steps. First, single- and two-

stage decomposition methods were applied, followed by the calculation of 12 scalar features 

describing the obtained components. 

In single-stage decomposition: band-pass filtering (BPF) [8, 9, 13], discrete wavelet 

transform (DWT) [8, 9, 13], empirical mode decomposition (EMD) [10, 14, 21], and variational 

mode decomposition (VMD) [13] were used. Two-stage methods included the Hilbert-Huang 

transform (HHT) and the combination of DWT and VMD with the Hilbert transform 

(DWT+HT, VMD+HT) [10, 13]. 

BPF adjusted the signal to frequency bands corresponding to brainwaves (gamma, beta, 

alpha, theta, delta). DWT enabled decomposition into five sub-signals using the Daubechies 3 

wavelet, while VMD and EMD extracted intrinsic mode functions (IMFs) representing EEG 

oscillations. To simplify analysis, a maximum of 13 IMFs was considered. The Hilbert 

transform allowed the determination of instantaneous frequency (IF), instantaneous amplitude 

(IA), and weighted frequency (WIF) [10, 13]. 

In the second stage of analysis, 12 scalar features were extracted, including statistical 

parameters (skewness, kurtosis, median) [9, 10, 14], energy-related features (energy, mean 
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power), Hjorth parameters (activity, mobility, complexity) [9, 10], Shannon entropy [10, 13], 

and maximum amplitude [10, 13]. 

2.5. Feature selection 

Based on a literature review, three feature selection methods: Particle Swarm Optimization 

(PSO) [14, 17], Neighborhood Component Analysis (NCA) [9, 14], and Principal Component 

Analysis (PCA) [16, 18] were chosen as commonly used and effective in EEG signal analysis, 

particularly for sleep apnea detection. These methods represent three different approaches to 

dimensionality reduction: PSO as an optimization algorithm, NCA as a supervised 

classification-based method, and PCA as a classical unsupervised technique based on variance 

analysis. 

Particle Swarm Optimization (PSO) is a metaheuristic optimization method inspired by the 

collective behavior of animal swarms, such as birds or insects. The primary goal of PSO is to 

identify the optimal feature vector by iteratively adjusting the weights or positions of particles 

within the search space. The particle parameters are updated based on their velocity and the 

best local and global positions achieved so far, until a specified number of iterations is 

completed. Literature suggests the following optimal input parameter values: 100 iterations, 

a number of particles equal to the number of features before selection, an inertia coefficient of 

0.4, and learning coefficients of 2 [22]. To verify the efficiency of these settings, a sensitivity 

analysis was conducted, testing four parameter sets that varied in the number of particles, inertia 

coefficient, and iteration count. 

Neighborhood Component Analysis (NCA) optimizes input data by selecting the most 

informative features for the classification process. This algorithm minimizes the distances 

between points belonging to the same class while maximizing the distances between points 

from different classes. It iteratively adjusts feature weights using training and validation data. 

To achieve optimal classification conditions, different proportions of test and training data were 

analyzed, maintaining a fixed proportion of validation data at 10%. The test data proportions 

were set at 20%, 25%, 30%, and 40%, while training data proportions were 80%, 75%, 70%, 

and 60%. Additionally, the regularization parameter λ was tuned within the range of 0.00001 

to 10 [9]. 

Principal Component Analysis (PCA) is a dimensionality reduction technique that 

transforms a large set of features into a smaller set of uncorrelated variables, referred to as 

principal components. According to the literature, the threshold for explained variance was set 

at 90% [23]. The PCA algorithm transforms the original variables by finding eigenvectors of 

the covariance matrix, identifying directions of maximum data variance [24]. 

To evaluate the effectiveness of each method, the k-NN algorithm was used, with the number 

of neighbors and distance metric optimally tuned for each method: k = 30 for PSO, k = 121 for 

NCA, and k = 17 for PCA, using the Manhattan distance metric [9]. The number of neighbors 

was determined based on the best results obtained for the feature set extracted using the HHT 

method without prior feature selection. After the initial feature selection for each extraction 

method, subsets of features with the highest average classification accuracy were combined, 

and a second round of feature selection was performed on the full dataset using the 

corresponding selection method. 

2.6. Classification and assessment of the efficiency 

Classification using a trained model is crucial for automating decision-making processes, 

particularly in medical diagnostics. To identify EEG signal segments corresponding to normal 

breathing and apnea episodes (OSA and CSA), the k-nearest neighbors (k-NN) algorithm was 
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applied [9, 10, 13, 16]. This nonparametric classifier assigns data to classes based on their 

similarity to examples in the training set. 

The k-NN algorithm involves calculating distances between new data points and elements 

of the training set, followed by selecting the k nearest neighbors. Classification is performed 

using a majority voting mechanism. To optimize the classifier’s parameters, classification 

accuracy was compared for different values of k (ranging from 3 to 150) and eight distance 

metrics: Chebyshev, Minkowski, Euclidean, correlation, cosine, city-block, standardized 

Euclidean, and Jaccard [25]. 

Model evaluation was conducted using 32-fold cross-validation to ensure reliable results 

through statistical averaging. In each iteration, a confusion matrix was generated, and 

classification performance metrics such as accuracy, precision, and sensitivity were calculated 

for both individual classes and the overall model [14]. 

3. Results 

After the initial preprocessing of overnight EEG recordings (7–8 hours), the signals were 

divided into 30-second epochs. Most epochs corresponded to normal breathing (NB), while 

those associated with respiratory disturbances were classified as apnea episodes (complete 

cessation of airflow) or hypopnea episodes (partial reduction in airflow). A total of 586 apnea 

epochs were identified (288 CSA, 170 OSA, 128 mixed), along with 2541 hypopnea epochs 

(1401 OSA, 1038 CSA, 102 mixed). Due to the lower number of CSA epochs, class balancing 

was performed by randomly selecting 1373 epochs from the OSA and NB classes. As a result, 

a total of 4119 epochs were obtained for further analysis. 

During the feature extraction stage, both single-stage (BPF, DWT, VMD, EMD) and two-

stage (DWT + HT, VMD + HT, HHT) decomposition methods were applied. The signal was 

decomposed into 5 components (BPF, DWT, VMD), 13 intrinsic mode functions (EMD), and 

15-39 components for the two-stage methods. For each component, 12 scalar features were 

computed, resulting in feature sets of varying sizes: 60 (BPF, DWT, VMD), 156 (EMD), 180 

(DWT + HT, VMD + HT), and 468 (HHT). In total, 1164 features were obtained per EEG 

epoch (Table 1), enabling detailed signal representation and serving as the foundation for 

subsequent feature selection and classification. 

Table 1. The number of features remaining after selection for each extraction method following the applied 

techniques. 

Extraction method 

Number of components after 

decomposition 

Number of features 

Before 

selection 

PSO NCA PCA 

Stage 1 Stage 2 After selection 

One-step methods 

BPF 5 Lack 60 12 22 39 

EMD 13 Lack 156 50 58 105 

VMD 5 Lack 60 11 22 40 

DWT 5 Lack 60 13 22 44 

Two-step methods 

HHT 13 3 468 178 168 396 

DWT + HT 5 3 180 57 66 158 

VMD + HT 5 3 180 58 66 155 

 

To obtain the optimal feature set for classifying three EEG signal classes (normal breathing, 

obstructive apnea, and central apnea), feature selection was performed using three methods: 
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PSO, NCA, and PCA. For each feature extraction method, a sensitivity analysis of initial 

parameters was conducted to determine their optimal values. 

The PSO algorithm was tested with various parameter combinations, including the number 

of swarm particles (55, 132, 180, 255, 468, 500, 550), the number of iterations (100, 325, 550, 

775, 1000, 1625), and the inertia coefficient (0.4; 0.525). Each parameter set was evaluated 

using the k-NN algorithm with k=30 neighbors, Manhattan distance metric, and 32-fold cross-

validation. Table 2 presents the number of features obtained after selection for various feature 

extraction methods, along with the optimal input parameter values and the best average 

classification accuracy among the tested cases. 

Table 2 The optimal input parameters for feature selection, as well as the average classification accuracy after 

feature selection using three methods: PSO, NCA, and PCA. 

 

Based on the results presented in Table 2, it can be observed that the highest values of 

average classification accuracy were achieved with the following set of parameters: 100 

iterations, an inertia coefficient of 0.4, and a number of particles corresponding to the number 

of features in the vector before selection. The lowest average classification accuracies after 

feature selection were recorded for the BPF method (55.1% ± 1.6%) and HHT (81.9% ± 0.9%), 

while the best results were obtained for signal decomposition using DWT (62.5% ± 1.8%) and 

VMD (94.5% ± 1.5%). These findings clearly indicate that feature selection contributed to an 

improvement in average classification accuracy in every case. 

After combining the initially selected feature subsets from each extraction method, 

a consolidated vector of 379 features was created and subsequently subjected to final selection. 

Sensitivity analysis for this vector identified the optimal parameters as 379 particles, 200 

iterations, and an inertia coefficient of 0.4. In this configuration, the application of PSO 

increased the average classification accuracy to 97.9% ± 1.2% and reduced the number of 

features to 134. 

In the neighborhood component analysis (NCA), various proportions of training and testing 

data were evaluated, with the validation data proportion fixed at 10%. The regularization 

parameter λ was optimized within the range of 0.00001 to 10 by minimizing the loss function. 

Evaluation using the k-NN algorithm (k = 121) showed the best results for 20% test data (DWT 

and EMD), 25% test data (VMD, BPF, DWT+HT, VMD+HT), and 30% test data for HHT 

(Table 2). 

After merging the feature subsets, a comprehensive vector containing 424 features was 

created. Feature selection using the NCA method reduced the number of features to 127, while 

simultaneously increasing the average classification accuracy to 96.8% ± 1.4%. 
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DWT 96.1±1.8 13 60 100 0.4 88.8±1.7 22 0.5456 0.4570 20 86.9±2.4 44 

VMD 94.5±1.5 11 60 100 0.4 93.1±1.5 22 0.007 0.4474 25 95.8±4.1 40 

EMD 89.1±1.3 50 418 10 0.4 88.7±1.7 58 0.0016 0.5752 20 89.8±2.1 105 

BPF 84.7±1.2 12 60 100 0.4 91.7±1.4 22 0.0144 0.4511 25 85.6±4.2 39 

HHT 81.9±0.9 178 468 100 0.4 80.8±1.4 168 0.007 0.5117 30 87.9±2.7 155 

DWT+HT 93.8±1.4 57 180 100 0.4 91.1±1.4 66 0.0034 0.3902 25 84.8±2.3 158 

VMD+HT 91.8±1.7 58 180 100 0.4 91.2±1.5 66 0.007 0.404 25 69.9±3.2 396 
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The application of Principal Component Analysis (PCA) with a 90% explained variance 

threshold reduced the number of features in the full vector from 937 to 798. However, 

performance evaluation using the k-NN algorithm (k=17) showed a lower average classification 

accuracy of 88.5% ± 1.5%, suggesting that PCA is less effective compared to PSO and NCA 

methods. 

Table 3 presents the best average classification accuracy results for each feature selection 

method (PSO, NCA, and PCA) for the full vector, as well as the number of features obtained 

after additional selection. The results indicate that PSO was the most effective method, 

achieving the highest classification accuracy with a significant reduction in the number of 

features. 

Table 3. Summary of average classification accuracy and final number of selected features for each tested 

algorithm, applied to the combined feature vector obtained after initial selection (P - average classification 

accuracy, SD - standard deviation). 

Feature selection method P±SD [%] Number of features 

PSO 97.9±1.2 134 

NCA 96.8±1.4 127 

PCA 85.5±1.5 798 

 

The optimization of the k-nearest neighbors (k-NN) classifier parameters was carried out by 

determining the best distance metric and the optimal number of neighbors using a majority 

voting system. The best results were achieved with the Euclidean metric and k=7. Further 

analysis was conducted using these parameters, generating confusion matrices and calculating 

accuracy, precision, and sensitivity for each class, as well as average values for the entire dataset 

after applying different feature selection methods (Table 4). 

The classification accuracy, assessed through 32-fold cross-validation, was 98.1% ± 1.8% 

for PSO, 97.9% ± 1.6% for NCA, and 85.6% ± 1.5% for PCA. Statistical tests showed 

a significant difference between PSO and PCA (p = 0.023), while no significant differences 

were observed between NCA and PSO (p = 0.25) or NCA and PCA (p = 0.056) at the 0.05 

significance level. 

Table 4. The confusion matrix for the tested feature selection methods, including classification accuracy, 

sensitivity, and precision calculated for each class, along with the averaged values of these parameters (A i -

accuracy, Pi - precision, Ri - recall, Ac - overall accuracy, Pμ - average precision, oraz Rμ - average recall). 

  Confusion matrix  
Classifier performance [%] 

In classes Averaged 

PSO 

  NB OSA CSA Ai Pi Ri Ac Pµ Rµ 

NB 1373 24 29 100 100 96.28 

98.03 98.05 98.07 OSA 0 1331 10 98.73 96.94 99.25 

CSA 0 18 1334 98.61 97.16 98.67 

NCA 

  NB OSA CSA Ai Pi Ri Ac Pµ Rµ 

NB 1373 42 63 100 100 92.9 

97.96 96.94 97.11 OSA 0 1311 0 98.47 95.42 100 

CSA 0 21 1310 97.96 95.41 98.42 

PCA 

  NB OSA CSA Ai Pi Ri Ac Pµ Rµ 

NB 1369 68 205 93.28 99.71 83.31 

85.56 85.58 85.86 OSA 3 1169 181 90.59 85.18 86.39 

CSA 1 136 987 87.33 71.85 87.87 

 

The classification results for the three feature selection methods (Table 4) show that both 

NCA and PSO enabled the k-NN classifier to achieve 100% accuracy in distinguishing normal 
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breathing from sleep apnea, regardless of the apnea type. The PSO method achieved the highest 

effectiveness, with an average accuracy of 98.03%, precision of 98.05%, and sensitivity of 

98.07%. The classifier optimized using NCA also performed highly effectively, with average 

values of 97.96% (accuracy), 96.94% (precision), and 97.11% (sensitivity). In contrast, the 

PCA method yielded lower results, with an average accuracy of 85.56%, precision of 85.58%, 

and sensitivity of 85.86%. These results indicate that PSO is the most effective feature selection 

method for the k-NN classifier in the analyzed application. 

4. Discussion 

The objective of this study was to develop a processing procedure for single-channel EEG 

signals to maximize the accuracy of automated sleep apnea detection and accurately 

differentiate between its types. This procedure was based on a classical approach, including 

preprocessing, feature extraction and selection, and then classification using the k-nearest 

neighbors (k-NN) algorithm. A key aspect of the study was comparing three feature selection 

methods: Particle Swarm Optimization (PSO), Neighborhood Component Analysis (NCA), and 

Principal Component Analysis (PCA) to identify the most effective techniques for optimal 

feature selection and maximizing classification accuracy. 

In the preprocessing stage, excessive amplitudes were eliminated, and low-pass and notch 

filtering were applied to remove power line noise, forming the basis for subsequent feature 

extraction and selection. Feature extraction was conducted in two steps, with single- and two-

stage signal decomposition methods applied in the first stage, followed by calculating 12 scalar 

features for each obtained component in the second stage. Methods such as BPF, DWT, EMD, 

VMD, and combinations of HHT, DWT+HT, and VMD+HT enabled the extraction of 

statistical, energetic, and dynamic features, which were then compiled into matrices for feature 

selection [13]. 

In the literature, few studies have focused on feature selection for sleep apnea detection using 

EEG signals. For example, studies [8, 11] used various feature selection techniques, such as the 

minimum redundancy maximum relevance (MRMR) algorithm [11], Fisher’s method [8], 

analysis of variance (ANOVA) with MRA [8], and calculating t-test p-values [13]. In other 

studies, feature vectors were not reduced, and the number of features was small. In contrast, 

this study compared three advanced feature selection methods (PSO, NCA, PCA), allowing 

a more comprehensive assessment of their effectiveness. In studies both with and without 

feature selection, high classification accuracy for sleep apnea detection was achieved, ranging 

from 89.01% to 99% without feature selection [7, 12] and from 89.9% to 99.53% with feature 

selection [8, 11]. 

A comparative analysis of these methods showed that PSO and NCA were more effective 

than the traditional PCA. The PSO method achieved the highest average classification accuracy 

of 97.9%, reducing the number of features from 379 to 134. NCA achieved a very similar 

accuracy of 96.8%, with an even greater reduction in features (down to 127). PCA, despite its 

popularity in dimensionality reduction, demonstrated significantly lower effectiveness, with 

an accuracy of 85.5%. 

The k-NN algorithm was optimized by selecting the most suitable distance metric and 

number of neighbors, with the best performance achieved using the Euclidean distance and 

k = 7. For the classifier based on the NCA method, the average accuracy reached 97.96%, with 

a precision of 96.94% and a sensitivity of 97.11%. The PSO method yielded even better results, 

with an accuracy of 98.03%, precision of 98.05%, and sensitivity of 98.07%, indicating its 

higher effectiveness compared to PCA. The confusion matrix analysis (Table 4) showed that 

both PSO and NCA enabled perfect distinction between normal breathing and apnea episodes. 

PSO proved particularly effective in distinguishing between apnea types (OSA and CSA), 
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confirming its ability to identify the most informative features. Statistical tests revealed 

a significant difference between the results of PSO and PCA (p = 0.023), highlighting PSO’s 

advantage over the traditional approach. However, no significant differences were found 

between NCA and PSO (p = 0.25) or between NCA and PCA (p = 0.056), suggesting that both 

PSO and NCA are comparably effective and suitable for classifying sleep apnea episodes. 

In the context of other studies on sleep apnea detection, many use either single- or dual-

channel EEG, especially when distinguishing apnea types. Studies using two symmetric EEG 

channels [10] achieved high binary classification accuracy, ranging from 94.33% to 99.68%. 

For apnea type differentiation, only a few studies [9, 11] focused on three-class classification 

(NB, OSA, and CSA), achieving average accuracy between 82.3% and 88.9%. This single-

channel EEG-focused study achieved an average classification accuracy of 96.8% for NCA and 

97.9% for PSO, representing a significant improvement compared to most previous studies, 

especially in distinguishing apnea types. These results confirm that advanced feature selection 

methods can compensate for the limitations of using a single EEG channel, offering high 

classification accuracy while simplifying the diagnostic system. 

Similar results are observed in other studies, where optimization-based methods (PSO) and 

neighborhood component analysis (NCA) outperform traditional dimensionality reduction 

methods. For example, Chen [22] applied PSO in the context of OSA diagnosis, achieving high 

classification accuracy. Additionally, Shahnaz and Minhaz [26] used a genetic algorithm (GA) 

for feature selection, achieving improved classification accuracy, which is consistent with our 

findings on PSO. 

Among other classification methods, such as support vector machines (SVM) [16, 21], 

Random Forest [18], and the k-nearest neighbors (k-NN) algorithm [16], the study by 

Alimardani and de Moor is noteworthy, achieving a binary classification accuracy of 99.98% 

using the SVM method [11]. This result is slightly higher than the results in this study; however, 

their study focused primarily on binary classification and feature selection methods specific to 

their approach. In our study, by selecting the most relevant features, we were able to improve 

classification accuracy and reduce computational complexity, which is especially important for 

applications in portable devices and home care systems. 

Although the study yielded very promising results, several limitations should be noted. First, 

the data were obtained from a single public database, which limits the generalizability of the 

results. Second, the number of epochs corresponding to central apnea was relatively small, 

which may have affected the classification quality for this class. Third, the analysis focused on 

epochs where apnea was centered within the segment a condition that may not always reflect 

real clinical scenarios. Future research should involve larger and more diverse datasets, analysis 

of multi-channel EEG recordings, and integration of feature selection methods with deep 

learning techniques, such as convolutional neural networks (CNN). This would allow for the 

development of even more accurate and adaptive diagnostic systems capable of real-time 

operation and suitable for practical, real-world use. 

5. Conclusion 

The approach presented in this study, based on single-channel EEG analysis and feature 

selection using three methods (PSO, NCA, and PCA), confirmed the feasibility of effective and 

accurate classification of sleep apnea episodes. The results demonstrate that even with a limited 

amount of input data, it is possible to achieve very high classification performance through 

appropriately selected signal processing and dimensionality reduction techniques. 

The use of the PSO algorithm enabled the highest average classification accuracy (98.03%) 

while significantly reducing the number of features. NCA achieved a very similar performance 

(97.96%). PCA, although widely used, proved less effective in this context. The k-NN 
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algorithm, optimized with suitable parameters (k = 7, euclidean distance), classified the data 

with high sensitivity and precision. This study shows that single-channel EEG analysis can 

provide a reliable foundation for developing simple, low-cost, and effective devices for sleep 

apnea diagnosis. Such solutions can be especially useful in ambulatory or home settings. The 

high accuracy achieved in three-class classification represents a significant advancement over 

previous studies and paves the way for further development of EEG-based systems enhanced 

by advanced feature selection methods and artificial intelligence. 
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