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Abstract 

The publication provides a critical analysis of fundamental documents concerning the determination of 

measurement uncertainty from the perspective of the machinery industry. The requirements contained in JCGM 

104, JCGM 100, JCGM 101 documents were compared with important documents used in geometrical 

measurements, particularly with EA-4/02, ISO 14253-2, ISO/TS 15530-1, ISO 15530-3, ISO/TS 15530-4, and 

VDI/VDE 2617-11. Significant differences between the analysed documents, both terminological and 

interpretative, were highlighted. The analysis was performed in the sequence of stages of determining 

measurement uncertainty: formulation, propagation, and summarizing. Special attention was paid to the problem 

of defining the measurement model and the insufficient reference to the measurement model in the analysed 

documents. Attention was drawn to the wide range of characteristics measured in the machinery industry, such as 

linear and angular dimensions and form, orientation, position, and runout deviations, as well as the wide range of 

measurement equipment used, from simple instruments like callipers, micrometers, and mechanical dial gauges, 

to coordinate measuring machines and measurement systems. The current approach to the uncertainty of 

coordinate measurements, including the new possibility of modelling coordinate measurement, was discussed. 

Keywords: uncertainty, law of propagation of uncertainty, methods of uncertainty propagation, sensitivity analysis, 

Monte Carlo method. 

1. Introduction 

A measurement result is generally expressed as a single measured quantity value and 

a measurement uncertainty. The measurement uncertainty is defined, among others in [1] as 

non-negative parameter characterizing the dispersion of the quantity values being attributed to 

a measurand, based on the information used. Measurement uncertainty may be presented as 

a standard deviation (called standard measurement uncertainty) or as a specified multiple of it 

(than is called expanded measurement uncertainty). Measurement uncertainty can be presented 

as a standard deviation (standard measurement uncertainty) or as a specified multiple of it 

(expanded measurement uncertainty). 

Providing measurement uncertainty is mandatory for measurements and calibrations 

performed by accredited laboratories, as required by ISO 17025 [2]. Increasingly, the provision 

of measurement uncertainty is also expected for measurements performed in industry 

(especially automotive), particularly for measurements used to assess the conformity with the 

requirements. This is directly derived from the provisions of the ISO 14253-1 [3] and IATF 

16949 [4]. 

Measurement in the mechanical engineering industry involves not only the manufactured 

parts but also the equipment, such as ring gauges [5], thread gauges [6], or taper gauges [7] 

(tapered parts are the gripping parts of cutting tools such as drills or reamers). The measured 

characteristics include linear and angular dimensions (see ISO 14405) [8, 9, 10] and geometrical 

deviations, such as form deviations (straightness, flatness, roundness, and cylindricity), 
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orientation (parallelism, perpendicularity, and angularity), location (position, coaxiality, 

concentricity, and symmetry), and runout (see [11]). 

Measuring equipment mainly consists of coordinate measuring machines and other 

coordinate measuring systems such as measuring arms or optical machines. Furthermore, 

simple measuring instruments like callipers, micrometres, mechanical dial gauges, and dial test 

indicators are still used. Specialized instruments are also utilized, such as roundness testers, 

gears measurement instruments, and surface roughness measurement devices. 

The above information indicates the extensive knowledge required by individuals dealing 

with measurement uncertainty in mechanical engineering. Therefore, the industry anticipates 

publications containing examples that facilitate the development of procedures/instructions for 

determining the uncertainty of various types of measurements. A fundamental element of such 

an instruction should be the measurement model. 

Measurement uncertainty should be a component of every measurement result; however, it 

is difficult to imagine that in industrial conditions, a full uncertainty analysis is conducted for 

every measurement. 

In measurements of geometric quantities, the most crucial components of measurement 

uncertainty are often repeatability (especially in measurements performed under challenging 

conditions, such as difficult access to the measured surface or poor lighting), the thermal effects 

component, and the instrument-related component. The latter can be calculated based on the 

formula for maximum permissible error (MPE), provided by the instrument manufacturer and 

verified during periodic checks/calibrations. Therefore, a single analysis should suffice to 

obtain a valid uncertainty value over a more extended period, or at least to obtain a calculation 

scheme (e.g. in the form of a spreadsheet) within which only changing data, such as the 

temperature at which the measurement was performed, need to be provided to obtain the 

uncertainty value. 

Guide to the expression of uncertainty in measurement (GUM) together with supplements 

organises largely the issues regarding measurements uncertainty determination. However, some 

ambiguity remains. This paper presents the evaluation of the current situation from the point of 

view of measurements conducted in mechanical engineering. In particular, requirements 

contained in JCGM 200 (ISO/IEC Guide 99, VIM) [1], JCGM 104 [12], JCGM 100 (GUM) 

[13], JCGM 101 [14], JCGM 102 [15] and JCGM GUM-6 [16] (theory) were compared with 

other documents applied in geometrical measurements, and in particular with EA-4/02M [17], 

ISO 14253-2 [18], ISO/TS 15530-1 [19], ISO 15530-3 [20], ISO/TS 15530-4 [21] and 

VDI/VDE 2617-11 [22] (practice). Attention was given, inter alia, to terminology, and, in 

particular, to terms such as: GUM uncertainty framework (GUF), law of propagation of 

uncertainty (LPU), type A and type B evaluations, three stages of uncertainty evaluation: 

formulation, propagation and summarising, explicit, implicit, extended, nested and multistage 

measurement models, propagation of distributions, three methods of propagation of 

uncertainty: analytical, GUF and Monte Carlo, application of central limit theorem, model 

linearization (Taylor expansion), correlation of input quantities, and others. 

In the cited passages of the quoted documents symbols applied therein were kept and in most 

cases their meaning was not explained – it was assumed that these documents could be easily 

consulted. The article aims to evaluate the consistency and completeness of existing standards 

and documents on measurement uncertainty, especially in relation to geometrical 

measurements. Particular attention is paid to the availability of the measurement model, as it 

forms the basis for verifying the uncertainty budget. 

The authors participate in ISO standardization work and in the development of a simple 

method for determining the uncertainty of coordinate measurements [23]. They also strive to 

disseminate more interesting examples of uncertainty analyses performed for the mechanical 

industry. 
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2. Stages of measurement uncertainty evaluation 

The main stages of uncertainty evaluation constitute formulation, propagation, and 

summarising [14, ch. 5.1], [12, ch. 5]. 

Formulation includes: 

• defining the output quantity Y, the quantity intended to be measured (the measurand); 

• determining the input quantity X1,…, XN upon which Y depends; 

• developing a model relating Y and X; 

• assigning (on the basis of available knowledge) probability distribution functions (PDFs) 

to particular Xi; assigning a joint PDFs to those Xi that are not independent. 

Propagation consists in determination of the output quantity distribution on the basis of the 

model and the input quantities PDFs. 

Summarising: using the PDF for Y to obtain (depending on the need) calculation (from PDF 

of the quantity Y) all or some of the below:  

• the expectation of Y, taken as an estimate y of the quantity, 

• the standard deviation of Y, taken as the standard uncertainty u(y) associated with y, 

• a coverage interval containing Y with a specified probability (the coverage probability). 

In measurements of geometric quantities, the output quantity Y is the measured characteristic 

of the object, such as a dimension or geometric deviation. Most often, direct measurement 

involves one input quantity X1, which is the one being measured (in the measurement of the 

shaft diameter with a micrometer, both the output and input quantities are the shaft diameter, 

meaning Y = X1). However, if we want to take into account the fact that the measurement result 

is affected by elastic deformation caused by the micrometer's measuring force, a second input 

quantity X2 appears – the correction related to the deformation. Since the correction should be 

added to the raw (uncorrected) measurement result, the relationship between Y and X1 and X2 

(the measurement model) will take the form Y = X1 + X2. 

The diameter of the shaft can be measured using coordinate measuring technique, such as 

with a coordinate measuring machine (CMM). From the user's perspective, this measurement 

can be treated similarly to a micrometer measurement (after completing the measurement 

program, the diameter value is obtained). However, upon closer inspection (analysing the part 

program), it can be observed that the measurement is, in fact, an indirect measurement: the 

coordinates of a certain number of points on the shaft's surface are "measured", and from the 

obtained values, the diameter is calculated. This means that the measurement involves a certain 

number of input quantities X1, ..., Xn, and the measurement model takes the form of an unknown 

(non-linear) function: Y = f(X1, ..., Xn). 

Let's imagine another case. The aim of the measurement is the diameter of a hole in a flat 

object. We have a measurement microscope that is not equipped with a computer. However, 

we decide to perform the measurement using the coordinate technique by "measuring" the 

coordinates of 3 points: xA, yA, xB, yB, xC, and yC (Fig. 1). 

 

a) 

 

b) 

 

Fig. 1. Illustration of different models for coordinate measurement of circle radius: a) radius calculated as the 

radius of a circle circumscribed on a triangle, b) centre of the circle determined as the intersection point of the 

perpendicular bisectors of the triangle's sides. 
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There are several possibilities for calculating the radius of a circle, which is equivalent to 

saying that there are several possible measurement models. Two of them are presented. The 

first is to use the well-known mathematical formula for the radius of a circle circumscribed 

around a triangle using Heron's formula for the area of the triangle. The input quantities here 

are the lengths of the sides a, b, c calculated from the measured differences in the coordinates 

of the pairs of points B-C, A-C, and B-A: 

𝑅 =
𝑎𝑏𝑐

2√(𝑎 + 𝑏 + 𝑐)(𝑎 + 𝑏 − 𝑐)(𝑎 − 𝑏 + 𝑐)(−𝑎 + 𝑏 + 𝑐)
 

𝑎 = √(𝑥𝐵 − 𝑥𝐶)2 + (𝑦𝐵 − 𝑦𝐶)2 

𝑏 = √(𝑥𝐴 − 𝑥𝐶)2 + (𝑦𝐴 − 𝑦𝐶)2 

𝑐 = √(𝑥𝐵 − 𝑥𝐴)2 + (𝑦𝐵 − 𝑦𝐴)2 

(1) 

The second possibility is to determine the centre of the circle as the intersection point of its 

perpendicular bisectors. 

𝑅 = √[0.5(𝑥𝐵 − 𝑥𝐴) + 𝑡(𝑦𝐵 − 𝑦𝐴)]2 + [0.5(𝑦𝐵 − 𝑦𝐴) − 𝑡(𝑥𝐵 − 𝑥𝐴)]2 

𝑡 =
1

2

(𝑥𝐶 − 𝑥𝐵)(𝑥𝐶 − 𝑥𝐴) + (𝑦𝐶 − 𝑦𝐵)(𝑦𝐶 − 𝑦𝐴)

(𝑦𝐵 − 𝑦𝐴)(𝑥𝐶 − 𝑥𝐴) − (𝑦𝐶 − 𝑦𝐴)(𝑥𝐵 − 𝑥𝐴)
 

(2) 

It can be assumed that both measurement models involve six input quantities: xA, yA, xB, yB, 

xC, and yC (coordinates of points A, B, and C). However, it will turn out that instead of 

coordinates, it is better to assume certain differences of coordinates as input quantities (also 

six). In the first case, these are: xB-xC, yB-yC, xA-xC, yA-yC, xB-xA, and yB-yA, in the second: xB-xA, 

yB-yA, xC-xB, yC-yB, xC-xA, and yC-yA. This is due to the fact that for length measuring devices 

MPE applies to the length value regardless of the location of this length in the measuring range. 

Above, different example measurement models of the same output quantity: the diameter or 

radius of the circle, are presented. It is already evident that an important and at the same time 

difficult element of the measurement uncertainty evaluation procedure is the development of 

the measurement model. 

3. General notation of the measurement model 

A measurement model, as an essential element enabling the determination of measurement 

uncertainty, is discussed in many documents. In the GUM, the term "measurement model" does 

not appear; instead, the term "mathematical model" [13, ch. 3.1.6, ch. 3.4.1] is used as 

a shorthand for "mathematical measurement model" [13, ch. 3.4.2]. The term "measurement 

model" (or its shortened form "model") is commonly used in JCGM 104 [14, ch. 3.10], referring 

to its definition from VIM [1, ch. 2.48]: "mathematical relation among all quantities known to 

be involved in a measurement." It is worth mentioning that VIM contains many other terms 

related to measurement uncertainty. 

The general formula for the measurement model has the following form [12, ch. 3.16] 

ℎ(𝑌, 𝑋1, … , 𝑋𝑁) = 0, and it can be most frequently presented in the form of a measurement 

function [12, ch. 3.15] 𝑌 = 𝑓( 𝑋1, … , 𝑋𝑁). In JCGM 101 [14] the same measurement models 

have vector notation [14, ch. 4.1] ℎ(𝑌, 𝑿) = 0, 𝑌 = 𝑓(𝑿). 

In JCGM 102 [15] a possibility of the output quantity being a vector quantity is considered, 

and then we talk about a multivariate measurement model, which has a general form [15, ch. 

3.8] ℎ(𝒀, 𝑿) = 0 and in case where it can be presented as a measurement function 𝒀 = 𝑓(𝑿). 
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The basic application of this measurement model relates to complex quantities. In geometric 

measurements such an approach can be used as regards geometrical elements which are defined 

by a particular number of parameters (vector). For example, to define a 2D circle 3 parameters 

are needed: two coordinates of the centre and a radius.  

The simplest form of the measurement model (function) is 𝑌 = 𝑋 where the output quantity 

is simply equal to the reading of a measuring instrument. Frequently, when it is possible to 

indicate additive sources of error, e.g. when it is possible (although not necessarily applied) to 

correct systematic errors, the measurement function takes the form 𝑌 = 𝑋 + 𝛿1 + ⋯+ 𝛿𝑛. 

Then we talk about the extended measurement model [16, ch. 10]. In general, when the output 

quantity is a sum of input quantities 𝑌 = 𝑋1 + ⋯ +𝑋𝑁 we talk about the additive model [14, 

ch. 9.2]. In practice, linear measurement functions act frequently as models, that is, functions 

of the form [12, ch. 4.14] 𝑌 = 𝑐1𝑋1 + ⋯+𝑐𝑁𝑋𝑁. 

Moreover, nonlinear models can be linearized [16, Annex F] by, for example, expanding the 

function into a Taylor series and rejecting higher-order terms. In some cases, to obtain proper 

accuracy it is necessary to leave some higher-order terms. Such a situation occurs, among 

others, in threads measurements. 

4. Measurement model in other important documents 

From the area of geometrical measurements, we find in JCGM 100 a measurement model of 

the gauge block length taking into account the effect of the thermal expansion phenomenon [13, 

ch. H.1.2] in the form 

 𝑙 =
𝑙𝑠(1+𝛼𝑠𝜃𝑠)+𝑑

1+𝛼𝜃
= 𝑙𝑠 + 𝑑 + 𝑙𝑠(𝛼𝑠𝜃𝑠 − 𝛼𝜃) + ⋯ (3) 

where: d is the difference in the lengths of the gauge block being calibrated and the standard, l 

is the measurand, that is, the length at 20 °C of the gauge block being calibrated, lS is the length 

of the standard at 20 °C as given in its calibration certificate, α and αS are the coefficients of 

thermal expansion, respectively, of the gauge being calibrated and the standard, θ and θS are the 

deviations in temperature from the 20 °C reference temperature, respectively, of the gauge 

block and the standard. 

The first part of the above formula is an exact formula, and the second part is its linearization 

(a fragment of the Taylor series expansion). The formula clearly indicates the significant 

importance of temperature differences and differences in expansion coefficients (the two error 

components from thermal effects are more visible in it).  

The other form of the model is 

 𝑙 = 𝑓(𝑙𝑠, 𝑑, 𝛼𝑠, 𝜃, 𝛿𝛼, 𝛿𝜃) = 𝑙𝑠 + 𝑑 − 𝑙𝑠(𝛿𝛼 ∙ 𝜗 − 𝛼𝑠 ∙ 𝛿𝜃) (4) 

where 𝛿𝛼 = 𝛼 − 𝛼𝑠 i 𝛿𝜃 = 𝜃 − 𝜃𝑠. 

Gauge blocks are among the most used length standards. Their measurements (calibration) 

are of interest to calibration laboratories and are the subject of numerous publications [e.g., 24]. 

In the document EA-4/02M [17] the measurement model is most often referred to as “model 

function” or ”relation”. We find there 3 examples of models from the area of gauges and 

geometrical measurement instruments calibration: 

• calibration of a gauge block of the nominal length of 50 mm [17, ch. S4]: 

 𝑙𝑋 = 𝑙𝑆 + 𝛿𝑙𝐷 + 𝛿𝑙 + 𝛿𝑙𝐶 − 𝐿(�̅� ∙ 𝛿𝑡 + 𝛿𝛼 ∙ Δ𝑡̅) − 𝛿𝑙𝑉 (5) 

where: 𝑙𝑋 is the length of the unknown gauge block, 𝑙𝑆 is the length of the reference gauge block 

at the reference temperature 𝑡0 = 20 °C according to its calibration certificate, 𝛿𝑙𝐷 is the change 

of the length of the reference gauge block since its last calibration due to drift, 𝛿𝑙 is the observed 

difference in length between the unknown and the reference gauge block, 𝛿𝑙𝐶 is the correction 
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for non-linearity and offset of the comparator, L is the nominal length of the gauge blocks 

considered; �̅� is the average of the thermal expansion coefficients of the unknown and reference 

gauge blocks, 𝛿𝑡 is the temperature difference between the unknown and reference gauge 

blocks, 𝛿𝛼 is the difference in the thermal expansion coefficients between the unknown and the 

reference gauge blocks, Δ𝑡 ̅is the deviation of the average temperature of the unknown and the 

reference gauge blocks from the reference temperature, 𝛿𝑙𝑉 is the correction for non-central 

contacting of the measuring faces of the unknown gauge block; 

• calibration of vernier calliper [17, ch. S10]: 

 𝐸𝑋 = 𝑙𝑖𝑋 − 𝑙𝑆 + 𝐿𝑆 ∙ �̅� ∙ ∆𝑡 + 𝛿𝑙𝑖𝑋 + 𝛿𝑙𝑀 (6) 

where: 𝐸𝑋 is the error of indication 𝑙𝑖𝑋 is the indication of the calliper, 𝑙𝑆 is the length of the 

actual gauge block, 𝐿𝑆 is the nominal length of the actual gauge block, �̅� is the average thermal 

expansion coefficient of the calliper and the gauge block, ∆𝑡 is the difference in temperature 

between the calliper and the gauge block, 𝛿𝑙𝑖𝑋 is the correction due to the finite resolution of 

the calliper, 𝛿𝑙𝑀 is the correction due to mechanical effects, such as applied measurement force, 

Abbe errors, flatness and parallelism errors of the measurement faces; 

• calibration of a ring gauge of the nominal diameter of 90 mm [17, ch. S13]: 

 𝑑𝑋 = 𝑑𝑆 + ∆𝑙+𝛿𝑙𝑖 + 𝛿𝑙𝑇 + 𝛿𝑙𝑃 + 𝛿𝑙𝐸 + 𝛿𝑙𝐴 (7) 

where: 𝑑𝑋 is the diameter of the ring, 𝑑𝑆 is the diameter of the reference setting ring at the 

reference temperature, ∆𝑙 is the observed difference in displacement of the measuring spindle 

when the contact tips touch the inner surface of the rings at two diametrically apart points, 𝛿𝑙𝑖 
is the correction for the errors of indication of the comparator, 𝛿𝑙𝑇 is the correction due to the 

temperature effects of the ring to be calibrated, the reference setting ring and the comparator 

line scale, 𝛿𝑙𝑃 is the correction due to coaxial misalignment of the probes with respect to the 

measuring line, 𝛿𝑙𝐸 is the correction due to the difference in elastic deformations of the ring to 

be calibrated and the reference setting ring, 𝛿𝑙𝐴 is the correction due to the difference of the 

Abbe errors of the comparator when the diameters of the ring to be calibrated and the reference 

setting ring are measured. 

Let us look at those models in more detail. Significant inconsistency is noticeable in treating 

the temperature error. In the first example there are two components (types) of this error: the 

first one (𝐿 ∙ �̅� ∙ 𝛿𝑡) is derived from the difference in temperature of the workpiece and the 

instrument (t), and the other one (𝐿 ∙ 𝛿𝛼 ∙ Δ𝑡̅) from the difference of expansion coefficients 

() and deviation from the reference temperature (Δ𝑡)̅. In the second example only the first of 

these two components is present (𝐿𝑆 ∙ �̅� ∙ ∆𝑡), that is, the difference in temperature of the gauge 

block and the vernier calliper (t) (one can guess that the other component was omitted as 

insignificant). The third example differs from the previous ones in that two rings and 

a comparator participate in the measurement. In the model the temperature error is present 

jointly as lT (”correction due to the temperature effects of the ring to be calibrated, the 

reference setting ring and the comparator line scale”), four components of this error were 

provided, and a separate analysis was used to determine the uncertainty component related to 

this error (”uncertainty sub-budget”). 

The term ”measurement model” is not used in ISO 14253-2 [18]. Instead, the term ”model 

of uncertainty estimation” is commonly used, within which a distinction is made between the 

black box method and the transparent box method. In the black box method of uncertainty 

estimation the result of the measurement is the reading corrected by an eventually known 

correction (that is, the measurement model has the form): 

 𝑌 = 𝑋 + 𝐶. (8) 
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In the transparent box method of uncertainty estimation, the value of the measurand is 

modelled as a function of several measured values Xi, which themselves could be functions 

(transparent box models) or black box models, or both: (that is, the measurement model has the 

form): 

 𝑌 = 𝐺(𝑋1, 𝑋2, ⋯ , 𝑋𝑝+𝑟). (9) 

As a side note: p+r index was applied to emphasise that among input quantities there is 

p uncorrelated quantities and r correlated quantities. 

In the standard there are the following four examples of uncertainty estimation for: 

• calibration of a setting ring, 

• measurement of local diameter with an external micrometer, 

• calibration of error of indication of an external micrometer, 

• measurement of roundness. 

The second example mentioned, with some completions, can serve as a basis for developing 

a guideline for determining the uncertainty of direct measurements performed in industry. 

The following formula for the measurement uncertainty was provided: 

 𝑢𝑐 = √𝑢𝑀𝐿
2 + 𝑢𝑀𝐹

2 + 𝑢𝑀𝐹
2 + 𝑢𝑀𝑃

2 + 𝑢𝑅𝑅
2 + 𝑢𝑁𝑃

2 + 𝑢𝑇𝐷
2 + 𝑢𝑇𝐴

2 + 𝑢𝑊𝐸
2 . (10) 

The individual uncertainty components are: uML – micrometer –error of indication, uMF – 

micrometer – flatness of measuring anvils, uMP – micrometer – parallelism of measuring anvils, 

uRR – resolution uRA or repeatability uRE (the largest of the two), uNP – variation of zero point 

between the operators, uTD – temperature difference, uTA – difference in thermal expansion 

coefficients and the deviations in temperature from the 20 °C reference temperature, uWE – 

workpiece form error. 

The given formula for measurement uncertainty emphasizes the fact that individual 

components of uncertainty are added in a quadratic manner. This indicates the presence of an 

extended measurement model, which can be reconstructed in the following manner: 

 𝑙 = 𝑙𝑀 + 𝛿𝑀𝐹 + 𝛿𝑀𝐹 + 𝛿𝑙𝑀𝑃 + 𝛿𝑙𝑅𝑅 + 𝛿𝑁𝑃 + 𝛿𝑙𝑇𝐷 + 𝛿𝑙𝑇𝐴 + 𝛿𝑙𝑊𝐸. (11) 

It is worth paying attention to the fact that uncertainty components are grouped consecutively 

according to their 4 sources: instrument (4 components), human (2 components), environment 

(2 components) and measured workpiece (1 component). Relevant uncertainty components 

come consecutively from error of indication, flatness of measuring anvils (two identical), 

parallelism of measuring anvils, repeatability or resolution, variation of zero point, temperature 

difference between micrometer and workpieces, deviation from standard reference temperature 

and error of form deviation of the workpiece. Two components (those the source of which is 

a metrologist) were determined with the A type method, the remaining ones with the B type 

method. 

In case of the B type method the highest values that could be assumed by particular errors 

were determined. 

The standard uncertainty type A is determined experimentally. For the type B method, the 

highest values that particular errors can assume are determined (denoted by a), and the 

appropriate probability distribution for this random variable is identified. Each specific 

probability distribution is associated with a coefficient b which allows the conversion of value 

a to the value of standard uncertainty u [18, ch. 8.3.2] 

 𝑢 = 𝑎 ∙ 𝑏. (12) 

Usually, one of the following distributions is chosen (the coefficient b value is given in 

parentheses): normal (usually 0.5), uniform (also called rectangular or even, 0.58), triangular 

(0.41), U-shaped (typically arcsine distribution, 0.71). The provided (approximate) values for 
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the coefficient b result from the relationship between the parameter a value and the variance of 

the distribution. 

For the components derived from the instrument (micrometer) information on MPE 

(maximum permissible error of indication), flatness and parallelism of anvils provided by the 

manufacturer was used. Two components deriving from the environment (due to thermal 

influences, to be more precise) were considered. For the first one (temperature difference 

between micrometer and workpieces) the extreme value aTD was calculated on the basis of 

earlier observations that this difference does not exceed 10 °C. For the other one (following 

from the differences between linear coefficients of thermal expansion and the fact that 

measurements are not conducted at the temperature of 20 °C) the extreme value aTA was 

calculated based on earlier observations that maximum deviation from standard reference 

temperature is 15 °C and on the assumption that linear coefficients of thermal expansion differ 

by maximum 10%. The extreme value for the component deriving from the workpiece was 

calculated based on the observation that cylindricity does not exceed 1.5 m. 

The standard contains a minor error instead of 𝑎𝑇𝐴 = 0.1 × ∆𝑇20 × 𝛼 × 𝐷 there should be 

𝑎𝑇𝐴 = ∆𝑇20 × ∆𝛼 × 𝐷 (only in the example ∆𝛼 = 0.1𝛼) 

Attention needs to be paid to the fact that in the current standard on the requirements for 

micrometers [25] MPEMF and MPEMP are no longer present, which results in the need for 

modification of the example in future revision of the standard.  

The technical specification ISO/TS 15530-1 [19] (Technique for determining the uncertainty 

of measurement. Part 1: Overview and metrological characteristics) mentions complying with 

GUM and ISO 14253-2. With reference to the specificity of the coordinate measuring technique 

attention was drawn to ”three general uncertainty categories”. The first one is instrumentation 

factors. These factors are typically the responsibility of the CMM manufacturer and are 

controlled by establishing permissible limits, e.g. temperature ranges, under which the CMM 

may be used. Some or all of these error sources may be assessed during acceptance or 

reverification testing of the CMM. The second category is measurement plan factors which 

involve how the CMM user decides to execute the measurement. This includes the workpiece 

location and orientation, the probes and styli selected for the measurement, and the particular 

measurement point sampling strategy. In this category attention is paid to the fact that the 

quantity being measured shall be unambiguously specified (it relates, among others, to 

matching criteria: a least-squares, minimum-circumscribed, maximum-inscribed or minimum-

zone). The third category is extrinsic factors such as non-ideal workpiece geometry (surface 

roughness, form errors, finite stiffness and thermal distortions), contamination, workpiece 

fixturing problems and variations among operators. 

Unfortunately, despite using the term ”task specific uncertainty”, no explicit attention is paid 

to the large diversity of geometrical characteristics of the measured workpieces (dimensions, 

angles and deviations of form, orientation, location and runout) [11]. 

The document distinguishes 3 techniques of coordinate measurements uncertainty 

determination. The first one, ”sensitivity analysis” refers clearly to GUF. The second one, 

however, ”use of calibrated workpieces or measurement standards” is treated as a technique 

not present in GUM, whereas it is fully compliant with GUF. The third technique, ”using 

simulation” refers to uncertainty propagation with the Monte Carlo method present in GUM. 

As a side note, it is worth noting that the Monte Carlo method can also be used to determine 

uncertainty components. The simulation of the measurement of the circle diameter of the 

workpiece with the three-lobed form error with the application of sampling in 6 uniformly 

distributed points, described in [21, Annex F], can serve as an example. The obtained 

distribution of errors is not a normal distribution and does not even contain the true value. More 

information can be found in [26]. 



Metrol. Meas. Syst., Vol. 32 (2025), No. 3 

DOI: 10.24425/mms.2025.154671 

 

In ISO 15530-3 [20] (Technique for determining the uncertainty of measurement. Part 3: 

Use of calibrated workpieces or measurement standards) the term ”measurement model” is not 

used. From the contents, and in particular from the provided formula for the measurement 

uncertainty calculation: 

 𝑈 = 𝑘 ∙ √𝑢𝑐𝑎𝑙
2 + 𝑢𝑝

2 + 𝑢𝑏
2 + 𝑢𝑤

2   (13) 

where: ucal is the standard uncertainty associated with the uncertainty of the calibration of the 

calibrated workpiece stated in the calibration certificate, up is the standard uncertainty 

associated with the measurement procedure as assessed below, ub is the standard uncertainty 

associated with the systematic error of the measurement process evaluated using the calibrated 

workpiece, uw is the standard uncertainty associated with material and manufacturing variations 

(due to the variation of expansion coefficient, form errors, roughness, elasticity and plasticity). 

It can however be inferred that GUF was applied and that we are dealing with an extended 

model in the form: 

 𝑌 = 𝑋 + 𝛿𝑐𝑎𝑙 + 𝑏 + 𝛿𝑤 (14) 

in which the output quantity is encumbered with 3 errors (cal, b and w). From the provisions 

of the standard it also follows that b shall be treated as a systematic (corrected) error with 

uncertainty ub, whereas cal and w shall not be corrected. Standard deviation calculated from 

the results of 20 repetitions of the measurement is treated as a component of the measurement 

uncertainty up determined with the type A evaluation (the standard provides a long list of factors 

having impact on this uncertainty component). As a side note, it is worth considering whether 

any other number of the measurement repetitions and application of t distribution should not be 

provided for in the standard. 

The component ucal is determined with the B method. The standard states that the component 

uw can be determined with the type A or type B evaluation. It also states that the component uw 

shall be calculated as a geometric sum of two components uwt and uwp, but there is no convincing 

argument in favour of the wisdom of their application. The overall conclusion is that there are 

significant inconsistencies in comparison with GUM.  

From the title of the technical specification ISO/TS 15530-4 [21] (Evaluating task-specific 

measurement uncertainty using simulation) it can be incorrectly inferred that the document 

contains recommendations as regards design of a relevant simulation model, while in reality we 

only find requirements to be met by simulation software as well as by any other software used 

for determination of coordinate measurements uncertainty, generally referred to as ”uncertainty 

evaluating software (UES)”.  

The only formula which is related to the measurement model is:  

 𝑢 = √𝑢𝑠𝑖𝑚
2 + ∑𝑢𝑖

2 (15) 

saying that an uncertainty component determined with the simulation technique should be 

complemented by components obtained otherwise. 

The title of the document VDI/VDE 2617:11 [22] (Determination of the uncertainty of 

measurement for coordinate measuring machines using uncertainty budgets) refers to GUF 

through the words “uncertainty budget”. The term “mathematical model” [22, ch. 3.2.2] and 

other terms present in GUM, such as, for example, type A or type B evaluation, standard 

uncertainties or sensitivity coefficients can be found in the document. The document indeed 

describes in detail a method of coordinate measurements uncertainty estimation. Two 

measurement models are also provided. The first one refers to the uncertainty of measurement 

of an bore diameter and has the form (symbols according to [22]): 
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 𝐷 = (𝐷𝑊 − ∆𝐷𝑇 + ∆𝐷𝐶) − ∆𝐿𝐶𝑀𝑀 − ∆𝐿𝑡 (16) 

where: 𝐷𝑊 is the diameter of the regression feature on the workpiece, ∆𝐷𝑇 is the error of stylus 

diameter during stylus qualification, ∆𝐷𝐶 is the error of the calibrated diameter of the reference 

standard, ∆𝐿𝐶𝑀𝑀 is the geometrical error of the CMM, ∆𝐿𝑡 is the length error due to the error 

of the expansion coefficient of the scale. 

The other model refers to the measurement of the distance between a plane and a cylinder 

axis (symbols according to [22]): 

𝐿 = (𝑋𝐸 − 𝑊𝐸

𝐿𝑆𝐸

𝐿𝑀𝐸
+ ∆𝑋𝑇𝐸 − ∆𝑅𝑇𝐸 +

∆𝐷𝐶

2
) + 

 −(𝑋𝐵 − 𝑊𝐵
𝐿𝑆𝐵

𝐿𝑀𝐵
+ ∆𝑋𝑇𝐵 − ∆𝑅𝑇𝐵 +

∆𝐷𝐶

2
) − (−∆𝑋𝑇𝑅 − ∆𝐿𝐶𝑀𝑀 − ∆𝐿𝑡) (17) 

where: 𝑋𝐸 is the coordinate of the toleranced feature at the centre of gravity, 𝑊𝐸 is the angle 

error of the toleranced feature for the measured length, 𝐿𝑀𝐸 , ∆𝑋𝑇𝐸 is the error of the centre 

coordinate of the stylus for the toleranced feature during qualification, ∆𝑅𝑇𝐸 is the error of the 

radius of the stylus for the toleranced feature, 𝑋𝐵 is the coordinate of the reference feature at 

the centre of gravity, WB is the angle error of the reference feature for the measured length, 

𝐿𝑀𝐵, ∆𝑋𝑇𝐵 is the error of the centre coordinate of the stylus for the reference feature during 

qualification, ∆𝑅𝑇𝐵 is the error of the radius of the stylus for the reference feature, ∆𝐷𝐶 is the 

error of the calibrated diameter of the reference standard, ∆𝑋𝑇𝑅 is the error of the centre 

coordinates of the styli due to rotation errors, ∆𝐿𝐶𝑀𝑀 is the geometrical error of the CMM. 

For the mentioned models example uncertainty budgets are also provided. The problem is 

that this method has not been widely recognised due to complex theoretical principles. 

5. Multistage measurement models 

Here it may be worth referring to the term ”multistage model” occurring in JCGM 104 [12]. 

In the multistage model output quantities from previous stages become input quantities to 

subsequent stages. In the first example two input quantities are measured with the use of various 

measuring systems of the same instrument and it cannot be ruled out that each of them is 

measured with a different uncertainty. In the second example two input quantities are measured 

with various measuring instruments. In the third example we are dealing with two types of 

quantities: the output quantity is an angle and the input quantities are lengths. In the fourth 

example, in the first step (stage) measurement uncertainties for 3 lengths a, b and c need to be 

determined. It is worth mentioning here that information concerning the accuracy of these 

lengths’ measurement is contained in the formula for maximum permissible error for length 

measurement EL,MPE provided by the manufacturer [27, ch. 3.6]. Additional measurement 

models may be needed to evaluate the measurement uncertainty of the input quantities. In the 

last two examples some functions of the directly measured quantities were assumed as input 

quantities. In all cases it is possible (or necessary) to use two-stage models. One of the two 

needed lower-stage models for the Fig. 1b measurement may be a model similar to the model 

of measuring the shaft diameter with a micrometer from ISO 14253-2 [18]. 

Two-stage models can also be all previously provided models in which ”corrections” were 

used, and there was no information whether they are actually applied – if they are, then the first-

stage model shall be needed to evaluate their uncertainty.  

It should be noted that the first two models as referred to in EA-4/02M [17, formulae 8 and 

9] would be more elegant  if the components related to the temperature error were relocated to 

the lower stage, that is, if the highest stage models assumed the form (see (6)): 

 𝑙𝑋 = 𝑙𝑆 + 𝛿𝑙𝐷 + 𝛿𝑙 + 𝛿𝑙𝐶 + 𝛿𝑙𝑇 − 𝛿𝑙𝑉, (18) 
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 𝐸𝑋 = 𝑙𝑖𝑋 − 𝑙𝑆 + 𝛿𝑙𝑇 + 𝛿𝑙𝑖𝑋 + 𝛿𝑙𝑀. (19) 

6. Measurement models in the coordinate measuring technique  

Currently, the basic technique used for geometrical measurements commonly applied in the 

industry is the coordinate measuring technique. This name means measurements with such 

measuring instruments as coordinate measuring machines, coordinate measuring arms, 

Computed Tomography (CT) scanners, laser-trackers, and others [28]. 

In ISO/TS 15530-4 [21] there is a statement: “... in the case of a CMM, the formulation of a 

classical uncertainty budget is impractical for the majority of the measurement tasks due to the 

complexity of the measuring process”. This probably concerns less an uncertainty budget, since 

in an extreme case it can contain only one or two components including jointly a significant 

number of influencing factors, than the fact that it is impossible to demonstrate how individual 

factors, known in particular to CMM manufactures, influence measurement uncertainty. This 

concerns in particular such factors as individual geometrical errors (and usually 21 are listed) 

or a measuring head errors. Interest in the influence of these errors is connected with previous 

research aiming at their mathematical correction mastered by manufacturers. 

A little bit further there is a statement that one of the alternative methods (for an uncertainty 

budget?) is using UES available on the market “... based on a computer-aided mathematical 

model of the measuring process. In this model, the measuring process is represented from the 

measurand to the measurement result, taking important influence quantities into account.”. The 

best known measurement model is the measurement model of single point coordinates. This 

model follows from CMM design (geometry, kinematics) and assumes the existence (in the 

simplest case) of 21 geometrical errors, among which only 3 (perpendicularity errors) are single 

random variables, and the remaining 18 are functions of CMM’s three measuring systems 

readings. In the most general version the model has the form (symbols according to [29]): 

 x* = xx(x, b) + Rx(x, b){xy(y, b) + Ry(y, b)[xz(z, b) + Rz(z, b)]} + ε  (20) 

where xx, xy and xz mean matrices of translation errors, and Rx, Ry and Rz matrices of rotation 

errors (nesting results from CMM design; it was assumed that the unit connected with the axis 

z moves together with the unit connected with the axis x and both of them together along the 

axis y). 

In another publication [30], for a specific CMM solution (Fig. 2) an analogous model (this 

time instead of the vector of the point coordinates encumbered with a measurement error the 

output quantity is vector E, that is, the point measurement error) is presented in a simplified 

form: 

 𝑬 = 𝑷 + 𝑨 ∙ 𝑿 + 𝑨𝑃 ∙ 𝑿𝑃 (21) 

 𝑨 = [
0 −𝑦𝑤𝑧 − 𝑥𝑟𝑧 𝑧𝑤𝑥 + 𝑥𝑟𝑦 + 𝑦𝑟𝑦
0 0 −𝑧𝑤𝑦 − 𝑥𝑟𝑥 − 𝑦𝑟𝑥
0 𝑥𝑟𝑥 0

], (22) 

 𝑨𝑃 = [

0 −𝑥𝑟𝑧 − 𝑦𝑟𝑧 − 𝑧𝑟𝑧 𝑥𝑟𝑦 + 𝑦𝑟𝑦 + 𝑧𝑟𝑦
𝑥𝑟𝑧 + 𝑦𝑟𝑧 + 𝑧𝑟𝑧 0 −𝑥𝑟𝑥 − 𝑦𝑟𝑐 − 𝑧𝑟𝑥

−𝑥𝑟𝑦 − 𝑦𝑟𝑦 − 𝑧𝑟𝑦 𝑥𝑟𝑥 + 𝑦𝑟𝑥 + 𝑧𝑟𝑥 0
], (23) 

 𝑿 = [
𝑥
𝑦
𝑧
] , 𝑿𝑃 = [

𝑥𝑃

𝑦𝑃

𝑧𝑃

] , 𝑷 = [

𝑥𝑡𝑥 + 𝑦𝑡𝑥 + 𝑧𝑡𝑥
𝑦𝑡𝑦 + 𝑥𝑡𝑦 + 𝑧𝑡𝑦
𝑧𝑡𝑧 + 𝑧𝑡𝑥 + 𝑧𝑡𝑦

]. (24) 
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Fig. 2. CMM kinematic diagram (source: [30], original description). 

The above models constitute a basis (they are first stage models) for evaluation of individual 

characteristics measurement uncertainty (dimensions, geometrical deviations) measured with 

the coordinate technique. In the second stage geometrical features (e.g. planes, cylinders) are 

matched to the gathered points, that is, parameters of these features (a plane – 6 parameters: 

a point and a standard unit vector, a cylinder – 7 parameters: a point, a standard unit vector of 

an axis and a diameter or a radius) are the output quantities. Assuming that the output quantities 

from the first stage model is n coordinates of points xi, yi, zi, a general second stage model for 

a plane has the form: 

 

[
 
 
 
 
𝑥𝑃

𝑦𝑃
𝑥𝑃

𝑢
𝑣
𝑤 ]

 
 
 
 

= 𝑓(𝑥𝑖, 𝑦𝑖, 𝑧𝑖), 𝑖 = 1⋯𝑛. (21) 

In case of dimensions and deviations of form at the second, and in other cases at the third 

stage relevant characteristics are calculated. Here the output quantity is a scalar (value of the 

dimension or the geometrical deviation).  

For example, the value of the flatness deviation flt is calculated from the same input 

quantities as the plane parameters: 

 𝑓𝑙𝑡 = 𝑓(𝑥𝑖, 𝑦𝑖, 𝑧𝑖), 𝑖 = 1,⋯ , 𝑛 (26) 

but one of a few options to calculate the value of the parallelism of two planes prl is to use the 

parameters u, v, w of both planes and also the size of the one which is a tolerated element 

(information contained in the coordinates of the points can be used to approximately evaluate 

the size r of the feature): 

 𝑝𝑟𝑙 = 𝑓(𝑢1, 𝑣1, 𝑤1, 𝑢2, 𝑣2, 𝑤2, 𝑟). (27) 

Information on the geometrical errors of CMM (data for the first stage model) can be 

obtained on the basis of a rather labour-intensive experiment. Only the producer of CMM 

software have full knowledge concerning the applied second and third stage models. 

Knowledge of these models shall not be necessary if the Monte Carlo method is used at the 

propagation stage and there is a possibility to use CMM software. 

In several European metrological institutes, simulation software developed at PTB and 

known as VCMM is used. Information on the probability distributions of errors occurring in 

the machine model is obtained based on several days of CMM research under good 

environmental conditions of the given laboratory. This information must be periodically 

updated, which limits the area of application to calibration laboratories. Software for use in 

industry must allow the simulation of measurements under variable environmental conditions 

[e.g., 31]. 

In ISO/TS 15530-1 [19, ch. 6.2], the following statement is outdated: “Since CMMs are 

complex measuring instruments, directly implementing this technique may only be possible for 
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a limited number of measuring tasks”. That statement is now outdated. In many publications, 

and in particular in [32, 33], the opposite has been shown. With appropriate assumptions, the 

measurement model (of a not too complex form) can include the essence of the coordinate 

measurements. The sensitivity coefficients present in the uncertainty budgets obtained on the 

basis of these models allow for an unambiguous indication of the weight of individual 

components. 

The mentioned method/technique (called in [32, 33] ”sensitivity analysis”) allows to 

determine the uncertainty for all geometrical characteristics, both for linear and angular 

dimensions, as well as for all geometrical deviations (form, orientation, location and runout) 

[11]. These models are based on known formulae [34, Table B.7] (symbols according to [34]): 

• point – straight line distance 

 𝑑(𝑃𝑇1, 𝑆𝐿2) = |(𝑨2 − 𝑷𝑻1) × 𝒖2| (22) 

• point – plane distance 

 𝑑(𝑃𝑇1, 𝑃𝐿2) = |(𝑨2 − 𝑷𝑻1) ∙ 𝒖2|  (23) 

• point – point distance 

 𝑑(𝑃𝑇1, 𝑃𝑇2) = |𝑷𝑻1 − 𝑷𝑻2| (24) 

• straight line – straight line distance 

 𝑑(𝑆𝐿1, 𝑆𝐿2) = |(𝑨2 − 𝑨1) ∙
(𝒖1×𝒖1)

|𝒖1×𝒖1|
| (25) 

As an example a measurement model of the position of the point (centre of the sphere) 

relative the secondary datum in the form of two perpendicular planes was provided (Fig. 3). 

 

a) b) 

 
 

Fig. 3. Measurement model of the position of the point from the secondary datum in the form of two 

perpendicular planes: a) a technical drawing, b) characteristic points for the measurement model. 

To define a measurement model a mathematically minimal number of points necessary to 

calculate the distance of the point S (centre of the sphere) from the plane p constituting the 

secondary datum is selected. The position is equal to the doubled value of the distance 

difference (observed and theoretically exact dimension, in the example equal to 25 mm) and it 

can be expressed as a function of differences of coordinates of 4 pairs of points (AB, AC, DE 

and DS), that is a function of 12 input quantities: 

 𝑙(𝑨𝑩, 𝑨𝑪,𝑫𝑬,𝑫𝑺) = 2 (𝑫𝑺 ∙
(𝑨𝑩×𝑨𝑪)×𝑫𝑬

|(𝑨𝑩×𝑨𝑪)×𝑫𝑬|
− 25). (32) 

So far, over 20 measurement models have been developed and programmed (Python, off-

line version), enabling the evaluation of measurement uncertainty for most geometric 

measurements. Currently, research is underway on the online version. 
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7. Assignment of probability distributions 

From the provisions in JCGM 104 [12] and JCGM 101 [14] it follows that to all input 

quantities probability distributions which are relevant for them need to be assigned. It is not an 

accurate wording, since in some cases knowledge of a standard deviation is enough. It is very 

often assumed that input quantities have a normal distribution, less frequently t-distribution. It 

is often assumed that input quantities have a symmetrical distribution (in case of errors 

distribution – symmetrical in relation to zero). There are however cases, where it is known, for 

example, that a given quantity or a measurement error of this quantity assume only non-negative 

values. Examples of such quantities in the mechanical engineering are all geometrical 

deviations (deviations of form, orientation, location and runout). Identification of the form of 

probability distribution and/or estimation of distribution parameters of any random variable can 

be performed based on research/statistical analyses or based on other information. 

Unfortunately, documents on uncertainty practically do not address this subject. GUM allows 

that ”using available knowledge” [13, ch. 3.3.5], ”for insight based on experience and general 

knowledge” [13, ch. 4.3.2], ”an a priori distribution” [13, ch. 4.1.6] or ”available information” 

[14, Table 1] to assume that a given input quantity has a specific distribution (e.g. uniform, 

triangular, normal, arcsine (U)). It also permits approximate assumption of extreme values 

which a given random variable can assume [18, Table B.1]). In the document JCGM 101 [14] 

the following probability distributions (except for those mentioned previously) are described in 

some detail (random numbers generators included): trapezoidal, curvilinear trapezoidal, 

exponential, gamma and multivariate normal (Gaussian) distribution. Sometimes a histogram, 

also referred to as frequency distribution, is enough to describe a random variable [14]. The 

problem of assigning probability distributions to input quantities is related to the terms ”type A 

uncertainty” and ”type B uncertainty”: ”Type A evaluations of standard uncertainty components 

are founded on frequency distributions while Type B evaluations are founded on a priori 

distributions.” used in GUM. It is worth mentioning here as a side note that type A and type B 

evaluations are methods of determining uncertainty components, and not generally understood 

methods of uncertainty determination. Both types of evaluation are based on probability 

distributions, and the uncertainty components resulting from either type are quantified by 

variances or standard deviations [13, ch. 3.3.4]. 

8. Propagation of distributions 

Propagation of distribution is the method used to determine the probability distribution for 

an output quantity from the probability distributions assigned to the input quantities on which 

the output quantity depends [14, ch. 3.17]. In a general case propagation can be implemented 

with three methods: analytically, using the central limit theorem (in accordance with GUF) or 

with the Monte Carlo method. 

9. Analytical propagation 

We deal with analytical approach to uncertainty propagation only in extremely rare cases. 

This approach is based on the theorem that distribution of the sum of two random variables is 

a convolution of these distributions (if f and g are probability density function (PDF) of 

independent random variables X and Y, then f ∗ g is the PDF of the random variable X + Y). The 

formula for the convolution of functions f and g has the form: 



Metrol. Meas. Syst., Vol. 32 (2025), No. 3 

DOI: 10.24425/mms.2025.154671 

 

ℎ(𝑥) = 𝑓 ∗ 𝑔 = ∫ 𝑓(𝑥 − 𝑡)𝑔(𝑡)𝑑𝑡

∞

−∞

 (26) 

Practically the only examples of application of measurement uncertainty in the analysis are:  

• determination of the distribution of the sum (also the difference) of any number of random 

variables with normal distributions; the sum (the difference) has a normal distribution of 

the expected value equal to the sum (the difference) of the expected values and a standard 

deviation equal to the geometric sum of the standard deviations,  

• determination of the distribution of the sum of two random variables with uniform 

distributions; the sum of two random variables with uniform distributions has a trapezoidal 

distribution (see e.g. [17, ch. S10]), and in a specific case (the sum of two random variables 

with the same uniform distributions) has a triangular distribution. 

10. GUM uncertainty framework. Law of propagation of uncertainty 

This is the case if the conditions of the central limit theorem are met: a sum of a large number 

of random variables (regardless of their distributions) has a normal distribution with expectation 

equal to the sum of the expectations, and a standard deviation equal to the geometric sum of the 

standard deviations. The requirement of a ”large” number of elements may be alleviated to the 

requirement that at least 2 or 3 largest elements had standard deviations of a similar order of 

magnitude.  

It needs to be noted explicitly that this is about the sum of random variables. In case of linear 

models the conditions of the central limit theorem need to be referred to products of function 

coefficients (sensitivity coefficients) and standard deviations. In case of nonlinear functions 

their earlier linearization is necessary, and the conditions of the central limit theorem remain 

the same as for a linear function. Expansion of the function into a Taylor series is most 

frequently used for linearization, which is frequently not even mentioned – values of the partial 

derivatives of the measurement function are simply assumed as sensitivity coefficients: 

 𝑢𝑐
2(𝑦) = ∑ (

𝜕𝑓

𝜕𝑥𝑖
∙ 𝑢𝑐(𝑥𝑖))

2

𝑁
𝑖=1   (27) 

Partial derivatives present in the formula are called sensitivity coefficients and are marked 

as ci. The described method of conduct (multiplication of input quantities uncertainties by 

relevant sensitivity coefficients and calculation of the output quantity uncertainty as a geometric 

sum of these products) is GUF. JCGM 101 [14] defines ”GUF” as ”application of the law of 

propagation of uncertainty and the characterization of the output quantity by a Gaussian 

distribution or a scaled and shifted t-distribution in order to provide a coverage interval”. 

The term ”law of propagation of uncertainty” is described in GUM [13, ch. 5.1, 5.2]. The 

simplest form of the formula for the propagation of uncertainty is the formula (34) [13, formula 

(10)]. It applies in case of uncorrelated input quantities. In case of significant non-linearity of 

the measurement function, a second component should be added in the form: [13, ch. 5.1.2]: 

 ∑ ∑ [
1

2
(

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
)
2

+
𝜕𝑓

𝜕𝑥𝑖

𝜕3𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
2] 𝑢2(𝑥𝑖)𝑢

2(𝑥𝑗)
𝑁
𝑗=1

𝑁
𝑖=1   (28) 

For the case of correlated input quantities the formula for the propagation of uncertainty has 

the form [13, formula (16)]: 

 𝑢𝑐
2(𝑦) = ∑ 𝑐𝑖

2𝑁
𝑖=1 𝑢2(𝑥𝑖) + 2∑ ∑ 𝑐𝑖𝑐𝑗𝑢(𝑥𝑖)𝑢(𝑥𝑗)𝑟(𝑥𝑖, 𝑥𝑗)

𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1  (29) 
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From this formula it follows that in case of negative correlation the value of the uncertainty 

calculated according to the formula can be lower than that calculated according to the formula 

(34). In an extreme case, when all input quantities are correlated and correlation coefficients 

are equal to +1, the above formula is simplified to the following form (instead of the geometric 

sum present in the formula (34) there is an algebraic sum):  

 𝑢𝑐
2(𝑦) = (∑ 𝑐𝑖𝑢(𝑥𝑖)

𝑁
𝑖=1 )2 = (∑

𝜕𝑓

𝜕𝑥𝑖
𝑢(𝑥𝑖)

𝑁
𝑖=1 )

2

  (30) 

In ISO 14253-2 there is a following formula for uncertainty [17 , combined formulae (18) 

and (19)]: 

 𝑢𝑐 = √(∑ 𝑢𝑖
𝑟
𝑖=1 )2 + ∑ 𝑢𝑖

2𝑝
𝑖=1   (31) 

which means that some component uncertainties are summed arithmetically (there are r of them 

and they are correlated components), and others (uncorrelated, there are p of them) 

geometrically. This is due to the fact that the standard suggests (for reasons of simplification) 

using only three values of the correlation coefficient: 0, +1 or -1 [18, ch. 5], although lack of 

correlation was assumed in all the examples provided in this standard.  

According to ISO 14253-2 [18] for transparent box models measurement uncertainty is 

calculated according to the formula:  

 𝑢𝑐 = √(∑
𝜕𝑌

𝜕𝑋𝑖
𝑢𝑋𝑖

𝑟
𝑖=1 )

2

+ ∑ (
𝜕𝑌

𝜕𝑋𝑖
𝑢𝑋𝑖)

2
𝑝
𝑖=1   (32) 

In comparison with the formula relating to the ”black box” partial derivatives were added, 

which were previously equal to one. 

11. Summarising 

The main objective of the stage called summarising is calculation of expanded uncertainty 

in order to obtain the possibility to record the measurement result in the form of y  U. If the 

measurement result will be used as input quantity for another measuring task, knowledge of 

standard uncertainty u or expansion coefficient k (in calibration certificates these are U and k) 

is also needed. The expansion probability p, most frequently amounting to 0.95 is important 

additional information. 

The most frequently applied approach to propagation and summarising is GUF or, in other 

words, the law of uncertainty propagation. Then the whole analysis is most often presented in 

the form of an uncertainty budget. The uncertainty budget contains names and values of all 

uncertainty components as well as other information, such as sensitivity coefficients or the 

name of the applied method of particular components determination (type A or type B 

evaluation). As a side note: a clear distinction should be made between the Monte Carlo method 

used for distributions propagation and simulation (maybe also with the Monte Carlo method) 

used to determine the probability distribution of the uncertainty component (determination of 

distribution of roundness deviation of the measured workpiece described in [26] is a good 

example). Examples of uncertainty budgets can be found in, e.g. [17, 18], there are no examples 

in GUM [13]. 

In case of using the Monte Carlo method the direct result of propagation is constituted by 

empirical distribution of the output quantity Y, from which all necessary information can be 

obtained. The whole document JCGM 101 [14] is devoted to the issue of uncertainty 

propagation with the Monte Carlo method. However, it should be noted that it lacks information 

concerning the methods of identification of probability distribution and estimation of their 
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parameters. Without going into further details: the type of probability distribution is most 

frequently recognised visually on the basis of a histogram, and distribution parameters are 

calculated with the method of moments or the method of the maximum likelihood estimation. 

However, a considerable number of observations is necessary to plot a histogram. Another 

possibility is to use probability nets available for normal distribution, but also for other 

distributions, e.g. for the Weibull distribution. Appropriate tools are available in software 

containing statistical functions (Minitab, Python). The term ”maximum likelihood” related to 

one of the methods of probability distributions parameters estimation occurs in [35]. 

An example of development of the results of analytical propagation of distributions can be 

found in [17, ch. S10]. 

The above statements relate to the most frequently occurring cases, when the coverage 

interval is symmetrical. There are numerous situations for which the coverage interval is not 

symmetrical to the measurement result, however, in standards lack appropriate examples. 

From the perspective of uncertainty propagation, the Monte Carlo method is a universal 

approach. In cases where we encounter asymmetrical distributions, the Monte Carlo method 

becomes the only feasible solution. The publication [14], which describes random number 

generators for various probability distributions, enables the resolution of more complex tasks 

related to measurement uncertainty determination. 

12. Conclusions 

In the machinery industry, it is required to specify and document the method of determining 

the uncertainty of all measurements that affect the decision on whether a product is compliant 

with the requirements or should be rejected as non-compliant. To achieve this, it is necessary 

to systematize and standardize documents of the status of international standards. The GUM 

guide, along with its supplements, largely organizes the subject of determining measurement 

uncertainty. From the perspective of industry professionals, documents that facilitate the 

creation of procedures for determining uncertainty for a wide range of measurement tasks and 

equipment are needed. 

In coordinate measurements, a troublesome issue is the correlation between the input 

quantities, which are the coordinates of probed points resulting from the sampling of a large 

cloud of points. This problem can be solved by building measurement models based on the 

minimum mathematically required number of points. Such models also allow for the 

consideration of the specifics of individual geometric characteristics of the measured objects. 

Analyses performed on the developed models indicate a considerable range of measurement 

uncertainty for different characteristics measured by the same CMM. In the briefly described 

new method of estimating the uncertainty of coordinate measurements, conclusions from the 

analysis were used. 
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