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Abstract 

Low-cost Micro-Electro-Mechanical System Inertial Measurement Units (MEMS-IMUs) are plagued by 

large, complex, and variable errors. Traditional strap-down inertial navigation systems that utilize MEMS-

IMUs are unable to meet the positioning requirements of wheeled robots. Although inertial navigation based 

on deep learning has been explored, it necessitates a substantial amount of carefully selected and labeled 

data, resulting in high costs. Consequently, this paper proposes a self-supervised neural inertial navigation 

method for wheeled robots that solely depends on MEMS-IMU data. Firstly, a representation learning model 

is established to extract general IMU features for self-supervised denoising. Subsequently, an intelligent 

framework employing contrastive learning is adopted to explore the latent information of the IMU and 

acquire the motion state of the robot. Specific motion state information is regarded as observations, and an 

invariant extended Kalman filter (IEKF) is applied for information fusion to enhance positioning accuracy. 

Experiments conducted on public datasets demonstrate that, in the absence of additional ground truth values, 

the Absolute Trajectory Error (ATE) and Temporal Relative Trajectory Error (T-RTE) of the proposed 

method are 20.23% and 30.71% lower than those of supervised learning based methods, respectively. The 

proposed method offers a more cost-effective and practical solution for the development of inertial navigation 

technology for wheeled robots. 

Keywords: MEMS-IMU, inertial navigation, self-supervised learning, wheeled robots navigation, motion state 

recognition. 

1. Introduction 

Inertial navigation utilizes gyroscopes and accelerometers to measure the angular and linear 

motion of a carrier in real time. It autonomously calculates the position, velocity, and attitude 

of the carrier without any external reference or additional sensors. Although the positioning 

error of high-precision inertial navigation systems is small, they are large in size, expensive, 

and require a long initialization process. In contrast, MEMS-IMUs have been widely used in 

the inertial navigation tasks of wheeled robots due to their advantages such as low cost, small 

size, and low power consumption [1-3]. 

To address the problem that MEMS-IMUs cannot be directly applied to navigation due to 

its large errors and complex error sources, the inertial navigation field usually adopts the 

method of calibration and compensation based on physical/mathematical modeling to address 

sensor errors or the cumulative errors in the inertial navigation solution process. However, such 

methods not only require dedicated calibration equipment or observations from other sensors, 

but also the methods based on mathematical modeling, which require dedicated calibration 

equipment or observations from other sensors, are difficult to fully approximate the real sensor 

characteristics and motion states [4-5], resulting in low efficiency and poor versatility. In recent 

years, with the rapid expansion of database scale and the enhancement of computer computing 
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power, deep learning technology has flourished, and researchers have begun to explore the 

potential of using a large amount of data to generate data-driven models. For example, the 

studies in [6-7] achieved very good results by using ground truth data such as those from higher-

precision IMUs or attitudes as references and calibrating the noise of inertial sensors and 

reducing the drift of inertial navigation systems with deep neural network models. TLIO [8] 

uses a residual network to regress the displacement increment and uncertainty of the carrier and 

combines it with the Extended Kalman Filter (EKF) to obtain accurate attitude and 3D 

positioning. LLIO [9] has implemented lightweight learning based on TLIO, making it more 

suitable for mobile devices. RINS-W [10] and Symmetrical-Net [11] identify the special motion 

states of the carrier through neural networks and use the constraint information of these special 

motion states as observations. Through Kalman filtering for information fusion, the positioning 

accuracy of the navigation system is improved. 

With the extensive application of deep learning in various fields, deep learning has great 

potential in the inertial navigation field. However, in the inertial navigation applications of 

wheeled robots, most deep-learning methods rely on supervised learning, and data preparation 

faces numerous challenges. For public datasets like KAIST [12], S3E [13], and 

Fusionportablev2 [14], data collection tasks are challenging. They need to cover precise data 

from multiple scenarios and working conditions, which in turn requires a large investment of 

human resources, material resources, and time. Data annotation also demands complex 

procedures and specialized knowledge to ensure accuracy and consistency. In terms of 

hardware, GPS signals are prone to interference in complex scenarios, which affects the 

continuous collection of data. Besides, high-precision IMUs have large volumes, which is not 

conducive to the design of compact robots. Adding devices such as vision sensors will increase 

costs and complicate the system design. At the software level, different sensors have diverse 

data characteristics and coordinate systems, making processing and calibration complex. 

Furthermore, coordinate transformation involves heavy computations, and high-precision 

timestamp alignment is required. Minor errors can impact system performance. In summary, 

hardware limitations and software complexity impede the practical application of deep learning 

in inertial navigation. Therefore, exploring neural inertial navigation methods that do not rely 

on real-world data is of great significance. 

Consequently, this paper, using only raw MEMS-IMU data, proposes a self-supervised 

neural inertial navigation method for wheeled robots. The network model of this method is 

based on Transformer Bidirectional Encoder Representation (BERT) and consists of three 

parts: IMU denoising, motion state recognition, and IEKF-based information fusion. In motion 

state recognition, pseudo-labels and contrastive learning are added to help the network extract 

features. By denoising IMU data and accurately identifying motion states, the accuracy of 

inertial navigation based on MEMS-IMU is significantly improved. The main contributions of 

this paper are as follows: 

1) Innovation in Self-supervised Denoising: In response to the fact that supervised-learning-

based IMU denoising methods rely on high-precision IMU data or other types of labeled data, 

this paper proposes a Self-Supervised Learning (SSL) model for IMU denoising. Through two 

key components, masked IMU modeling and next-moment IMU prediction, it realizes the 

denoising of IMU data based on SSL. This approach circumvents the limitations imposed by 

reliance on external data, enhancing the generality and autonomy of denoising. 

2) Innovation in Motion State Recognition：In the field of robot motion state recognition, 

traditional methods such as RINS-W and Symmetrical-Net use neural networks to identify 

special motion states but rely on a large amount of labeled data for supervised learning. The 

intelligent framework proposed in this paper integrates the ideas of pseudo-labels and 

contrastive learning. Without real data, it can accurately obtain the motion states of the robot in 
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different time periods by exploring the latent information of the IMU through the contrastive 

learning algorithm. 

2. System design 

2.1. Coordinate frame and symbol 

Inertial navigation measures the angular and linear motions of the carrier through the IMU 

fixed on the vehicle. Under given certain initial conditions, the attitude, velocity and position 

of the mobile platform relative to the starting point (𝑅0, 𝑣0, 𝑝0) are obtained through navigation 

solution. As shown in Fig.1, the carrier coordinate frame 𝑏 is a coordinate frame solidly 

attached to the vehicle, which is denoted by (∙)𝑏. In this application scenario, it is assumed that 

the carrier coordinate frame is already aligned with the IMU coordinate system, and the effects 

of the Earth's rotation and Coriolis acceleration are ignored. The navigation coordinate frame 

is the reference coordinate frame. 𝑅  is the rotation matrix from the carrier frame to the 

navigation frame. (⋅)𝑛 is the data corresponding to time n, and (⋅̂) as the estimated value. Data 

corresponding to the frames from the 1-st to the n-th is denoted by (∙)1,𝑛. 

2.2. System overview 

The neural inertial navigation system for wheeled robots uses raw IMU data as input. 

Relying on SSL, it outputs position, attitude, and velocity estimations. Comprising three key 

parts, as shown in Fig. 2, it starts with IMU denoising. Here, the network predicts masked IMU 

data and next-sequence values to clean up random noise in the original data. 

Next, the motion state recognition step focuses on distinguishing the categories of motion 

states. By segmenting denoised IMU data, labeling with pseudo-labels, and constructing sample 

sets, it trains the network to distinguish different motion states. 

Finally, the IEKF part obtains more accurate positioning information of the wheeled robot 

by fusing the denoised IMU data and the motion state categories. 

 

 
 

Fig. 1. Coordinate frame definition. Fig. 2. Proposed system structure block diagram. 
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3. Network model based on SSL 

3.1.  IMU Denoising 

3.1.1. Masked IMU modeling 

BERT is an effective SSL model in natural language processing. It uses the bidirectional 

Transformer model and can better understand the context in the continuous measurements of 

IMU. BERT has two pre-training tasks: Masked Language Modelling (MLM) and Next 

Sentence Prediction (NSP). This paper adapts them as Masked IMU Modeling (MIM) and Next 

IMU Prediction (NIP), with corresponding BERT models BERTMIM and BERTNIP and network 

parameters α and 𝛽. By masking, reconstructing, and predicting data, the network improves its 

understanding of IMU noise and feature representation learning, enhancing its denoising ability. 

As shown in Fig. 3, the BERT network's main architecture has 4 stacked Transformer encoders 

and an additional decoder. Unlabeled IMU data is first contaminated with Gaussian noise, then 

normalized, and finally 15% of its values are randomly masked. The processed data needs to 

undergo data transformation via the projection function and then undergo layer normalization 

again to further restrict the statistical variance. Before the data enters the encoder, it is also 

necessary to perform positional encoding on the sequence data so that the model can capture 

long-distance dependencies based on positional information. 

The encoder consists of multi-head self-attention layers and feed-forward neural networks, 

with each sub-layer followed by residual connection and layer normalization. A multi-head 

prob-sparse self-attention mechanism [15] is used to reduce the time and space complexity of 

traditional Transformers and speed up model training. It probabilistically samples only part of 

keys K and queries Q for calculation, multiplying attention weights by a normalization factor 

to keep the sum at 1. The decoder is a linear layer with input and output dimensions of (72, 6). 

In the masked IMU modeling task, 15% of IMU sequence values are randomly masked. After 

the decoder generates the prediction vector, the values at masked positions are obtained, and 

the associated loss is calculated 

 ℓ𝑀𝐼𝑀 = 𝐿𝑜𝑠𝑠(𝑓(𝐵𝐸𝑅𝑇𝑀𝐼𝑀(𝑈, 𝛼), 𝑚𝑎𝑠𝑘_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛), 𝑈𝑀), (1) 

where 𝑈 ∈ ℝ𝐿×6 denotes an IMU sequence of sequence length 𝐿 , 𝑈𝑀 represents the IMU 

measurements at the masked position, 𝑚𝑎𝑠𝑘_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛represents the mask position, and 𝑓(∙) is 

a function extracting the corresponding value of the masking position from the prediction vector. 

 

  

Fig. 3. Network structure diagram in IMU denoising. Fig. 4. Construction method of motion state recognition 

network structure. 
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3.1.2. Next IMU sequence prediction 

The original NSP task of BERT is to determine whether the second sequence is the 

subsequent sentence of the first sequence when two sequences are provided. The original NSP 

task of BERT is modified. When the IMU sequence of the current time period is given, the IMU 

sequence of the next time period is directly predicted to enhance the generation ability of the 

model. The next moment IMU sequence corresponding to 𝑈 is denoted by 𝑈𝐹, and 𝑈𝐿 = 𝑈1
𝐹, 

meaning that the last frame of the current IMU sequence is equal to the first frame of the future 

IMU sequence. As the training progresses, the last frame of the reconstructed IMU sequence of 

𝐵𝐸𝑅𝑇𝑀𝐼𝑀 should be equal to the first frame of the future IMU sequence generated by 𝐵𝐸𝑅𝑇𝑁𝐼𝑃, 

furthermore, the estimated values corresponding to (2) and (3) are equal: 

 𝑈̂𝐿
𝑀𝐼𝑀 = 𝐵𝐸𝑅𝑇𝑀𝐼𝑀(𝑈, 𝛼̂)𝐿, (2) 

 𝑈̂𝐿
𝑁𝐼𝑃  =  𝐵𝐸𝑅𝑇𝑁𝐼𝑃(𝑈, 𝛽̂)1   , 𝑈̂𝐿

𝑁𝐼𝑃+𝑀𝐼𝑀  =  𝐵𝐸𝑅𝑇𝑁𝐼𝑃(𝐵𝐸𝑅𝑇𝑀𝐼𝑀(𝑈, 𝛼̂), 𝛽̂)1. (3) 

Equation (2) is the IMU estimation equation for the operation at the actual denoising time, 

and 𝑈𝐿
𝑔𝑡

 represent the ground truth of IMU measurements, then the systematic error at the actual 

denoising time is: 

 𝐸𝑟𝑟𝑜𝑟(1) = 𝑈𝐿
𝑔𝑡

−  𝑈̂𝐿
𝑀𝐼𝑀   = (𝑈𝐿

𝑔𝑡
− 𝑈𝐿) + (𝑈𝐿 − 𝑈̂𝐿

𝑀𝐼𝑀), (4) 

where (𝑈𝐿
𝑔𝑡

− 𝑈𝐿)  is the error between the IMU outputs and the ground truth, and 

(𝑈𝐿 − 𝑈̂𝐿
𝑀𝐼𝑀) is the 𝐵𝐸𝑅𝑇𝑀𝐼𝑀’s estimation error. Similarly, the error 𝐸𝑟𝑟𝑜𝑟(2) corresponding 

to (3) is: 

 𝐸𝑟𝑟𝑜𝑟(2) = (𝑈𝐿
𝑔𝑡

− 𝑈𝐿) + (𝑈𝐿 − 𝑈̂𝐿
𝑁𝐼𝑃). (5) 

Since the model 𝐵𝐸𝑅𝑇𝑀𝐼𝑀 is utilized to denoise the original IMU data, it is necessary to 

minimize 𝐸𝑟𝑟𝑜𝑟(1). However, when the ground truth 𝑈𝐿
𝑔𝑡

 of the IMU are unknown, training 

using (2) can only reduce (𝑈𝐿 − 𝑈̂𝐿
𝑀𝐼𝑀) and cannot eliminate the measurement noise of the 

IMU. Therefore, in order to offset the impact of the unknown 𝑈𝐿
𝑔𝑡

 on the training process, The 

following transformation will be made to obtain: 

 𝑚𝑖𝑛(𝐸𝑟𝑟𝑜𝑟(1)) = 𝑚𝑖𝑛(𝐸𝑟𝑟𝑜𝑟(1) − 𝐸𝑟𝑟𝑜𝑟(2) + 𝐸𝑟𝑟𝑜𝑟(2)). (6) 

Further simplification of the formula gives: 

 min(𝐸𝑟𝑟𝑜𝑟(1)) = min([𝑈̂𝐿
𝑁𝐼𝑃 − (𝑈̂𝐿

𝑀𝐼𝑀 − 𝑈𝐿
𝑔𝑡

) − 𝑈𝐿]) + 𝑚𝑖𝑛((𝑈𝐿 − 𝑈̂𝐿
𝑁𝐼𝑃)), (7) 

 min((𝑈𝐿 − 𝑈̂𝐿
𝑁𝐼𝑃) → ℓ𝑁𝐼𝑃 = 𝐿𝑜𝑠𝑠(𝐵𝐸𝑅𝑇𝑁𝐼𝑃(𝑈, 𝛽), 𝑈𝐹). (8) 

By observing (7), it is known that during network training, when the loss function is set in 

the manner of (8), the second half part of (7) can be minimized. As for the former part, 

a relationship between 𝐵𝐸𝑅𝑇𝑀𝐼𝑀, 𝐵𝐸𝑅𝑇𝑁𝐼𝑃, and 𝑈𝐿 needs to be established. The loss function 

is designed as follows to endow the network model with the ability to denoise the IMU: 

 〈𝛼̂, 𝛽̂〉 = ℓ𝑀𝐼𝑀 + ℓ𝑁𝐼𝑃 + 𝐿𝑜𝑠𝑠(𝐵𝐸𝑅𝑇𝑁𝐼𝑃(𝐵𝐸𝑅𝑇𝑀𝐼𝑀(𝑈, 𝛼), 𝛽), 𝑈𝐹). (9) 

3.2. Motion State Recognition of Wheeled Robots 

The well-trained network in Section 3.1 is utilized to denoise the original IMU data, and the 

measurement of the denoised accelerometer 𝑎̂ and gyroscope 𝜔̂ are obtained. The denoised 

IMU data will be employed to train the motion state recognition network. In this section, the 

four specific motion states of the wheeled robot and the design principle of the motion state 

recognition method will be introduced in detail. 
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3.2.1. Specific motion states 

Four distinct specific motion state are considered, and their validity is encoded in the 

following binary vector 𝑧𝑛 , where 1 represents the emergence of a corresponding state of 

motion: 

 𝑧𝑛 = (𝑧𝑛
𝑉𝐸𝐿, 𝑧𝑛

𝐴𝑁𝐺 , 𝑧𝑛
𝐿𝐴𝑇 , 𝑧𝑛

𝑈𝑃) ∈ {0,1}4, (10) 

where 𝑧𝑛 is the motion state, 𝑧𝑛
𝑉𝐸𝐿 is the zero-velocity state, 𝑧𝑛

𝐴𝑁𝐺 is the zero angular velocity 

state, and 𝑧𝑛
𝐿𝐴𝑇 and 𝑧𝑛

𝑈𝑃 represent the zero lateral and vertical velocity states, respectively. The 

latter two assumptions effectively ensure the long-term estimation accuracy. The lateral and 

vertical velocities should be expressed in the carrier coordinate frame. Table 1 shows the output 

characteristics of IMU data corresponding to typical motion states. It is worth noting that when 

the wheels stop, zero-speed does not imply zero angular velocity, and the two must be 

distinguished [10]. As shown in Fig. 5, in the lateral zero- speed state, the lateral acceleration 

stabilizes at a value close to zero (not always zero) for a certain period of time, making it 

a recognition feature for lateral zero speed. 

 

Table 1. Typical motion states of wheeled robots. 

motion state IMU features  

𝑧𝑛
𝑉𝐸𝐿  

𝑧𝑛
𝑉𝐸𝐿 = 1 ⇒ {

𝑣𝑛 ≈ 0
𝑅𝑛𝑎𝑛 + 𝑔 ≈ 0

 (11) 

𝑧𝑛
𝑉𝐸𝐿 = 1 ⇒ ‖𝑎1,𝑛‖

2
≈ 9.8 (12) 

𝑧𝑛
𝐴𝑁𝐺  𝑧𝑛

𝐴𝑁𝐺 = 1 ⇒ 𝜔𝑛 ≈ 0 (13) 

𝑧𝑛
𝐿𝐴𝑇  

𝑧𝑛
𝐿𝐴𝑇 = 1 ⇒ 𝑣𝑛

𝐿𝐴𝑇 ≈ 0 (14) 

𝑧𝑛
𝐿𝐴𝑇 = 1 ⇒  ‖𝑎2,𝑛

𝐿𝐴𝑇 − 𝑎1,𝑛−1
𝐿𝐴𝑇 ‖

1
≈ 0 (15) 

𝑧𝑛
𝑈𝑃 

𝑧𝑛
𝑈𝑃 = 1 ⇒ 𝑣𝑛

𝑈𝑃 ≈ 0 (16) 

𝑧𝑛
𝑈𝑃 = 1 ⇒ 𝑎1,𝑛

𝑢𝑝
≈ 0 (17) 

 

 

Fig. 5. Lateral acceleration characteristics when wheeled robots in  zero lateral speed state. 

3.2.2. Motion state recognition network structure 

The motion state recognition network structure still employs the BERT network structure, 

but with certain adjustments. As depicted in Fig. 4, “∗ | ∗ | ∗ | ∗” represents the input dimension, 

output dimension, convolution kernel and dilation coefficient of the one-dimensional 

convolutional neural network, respectively. The decoder is modified to a projection head, which 

functions as the motion state recognizer. It is worth noting that motion state recognition requires 
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highly distinguishable features. However, during the process of IMU denoising, the network, 

in order to minimize reconstruction losses and reconstruct sequences, tends to extract features 

with high coincidence. Therefore, the parameters trained in the denoising process cannot be 

utilized in the motion recognition step. Moreover, as the feature dimensions output by the 

encoder are more similar to the size of the generated sequence, it is necessary to further 

compress and extract the features generated by the encoder. First, a three-layer dilated 

convolutional network is used to fuse the features, and the range of the receptive field of the 

network is changed by adjusting the size of the convolution kernel and the dilation coefficient. 

Finally, the final category features are generated through four fully connected layers. 

The absence of precise motion state labels in this article makes it infeasible to construct 

a loss function by minimizing the loss between the true and predicted labels. To address this 

issue, the concept of contrastive learning is adopted, where the similarity of the same category 

is higher. Contrastive loss is then employed for training the model. The specific approach is 

stated as follows: With sample pairs as the unit, we aim to maximize the similarity of pairs that 

belong to the same category and minimize the similarity of pairs from different categories. As 

depicted in Fig. 6a, when the zero lateral velocity is selected as a positive sample, all other 

motion states that are distinct from the zero lateral velocity are regarded as negative samples. 

Before entering the network, data augmentation is carried out on both positive and negative 

samples, generating two new sets of sequences. The neural network converts the IMU time 

series into corresponding category probability distributions. Determining whether a sample 

belongs to the same category can be regarded as a binary classification problem. The Binary 

Cross Entropy (BCE) is used as the loss function for optimization: 

 𝐿𝑖𝑗 = 𝐵𝐶𝐸(𝑟𝑖𝑗, 𝑠𝑖𝑗) = −𝑟𝑖𝑗 ∙ 𝑙𝑜𝑔(𝑠𝑖𝑗) − (1 − 𝑟𝑖𝑗) ∙ 𝑙𝑜𝑔(1 − 𝑠𝑖𝑗), (18) 

where 𝑟𝑖𝑗 represents the true value of the label for the binary classification problem, and back-

propagation is utilized to optimize the parameters of the entire model. 

a) b) 

  

Fig. 6. a) Method of dividing positive and negative samples; b) method for constructing pseudo labeled sample 

sets. 

3.2.3. Construction of pseudo sample set 

Wheeled robots' motion states far exceed the four above, with numerous hard-to-classify 

categories. Thus, determining whether IMU sequences are positive or negative samples without 

labels is crucial for the algorithm. Section 3.2.1 details typical IMU output features in different 

motion states. Using these, most time series can be classified and pseudo-labels can be created. 

Though unreliable pseudo labels misclassify some data into the "other" category, they ensure 

that different feature data belong to different categories, thus enabling contrastive learning. 

Despite misjudgments caused by using them, the "other" category in training enhances network 

discrimination, as will be demonstrated in subsequent experimental sections. 

Figure 6b shows the pseudo-label sample set construction. In practice, as the four states may 

overlap and disrupt feature extraction, single-characteristic time periods should be extracted. 

For example, pure zero-velocity states without zero angular velocity. A separate category is 
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made for concurrent zero lateral and vertical speeds to avoid overlap. Only when no typical 

features exist is it the "other" category. So, there are six categories in training. After training, 

overlapping parts are re-assigned in category statistics. 

3.3. Network training details 

The method needs three independent neural nets. As IMU sensor readings vary in 

distribution, which affects model performance, appropriate normalization is needed before 

inputting sensor data, and only process accelerometer values because gyroscope readings are 

small. In motion state recognition, IMU data requires normalization and data augmentation 

(crucial for contrastive learning). Data augmentation methods include: 

1) Data translation: Shift the time series on the time axis by a fixed interval while keeping 

the same pseudo-label category. 

2) Add noise: Add random noise to the time series. 

3) Data replacement: Replace the original time series with a time series of the same pseudo-

label category but different source. 

The model was implemented with PyTorch Lightning on an RTX3060 GPU. Training used 

batch size 512, ADAM optimizer with initial learning rate 10−3, and cosine annealing warm 

restarts strategy (first restart after 500 iterations, subsequent restarts with more than 10 times 

previous iterations, both 𝜆1 and 𝜆2 set to 1. For denoising, IMU sequence length was 30 with 

15% masking rate; for motion state recognition, it was set to 200. 

Table 2. Modify the dynamic model based on observed values. 

The dynamic model (19) Propagation Step (20) Update Step (21) 

𝑅𝑛+1 = 𝑅𝑛𝑒𝑥𝑝([𝜔𝑛𝑑𝑡]×) 

𝑣𝑛+1 = 𝑣𝑛 + (𝑅𝑛𝑎𝑛 + 𝑔) × 𝑑𝑡 

𝑝𝑛+1 = 𝑝𝑛 + 𝑣𝑛 × 𝑑𝑡  

𝑧̂𝑛
𝑉𝐸𝐿 = 1 ⇒ {

𝑣𝑛+1 = 𝑣𝑛

𝑝𝑛+1 = 𝑝𝑛
 

𝑧̂𝑛
𝐴𝑁𝐺 = 1 ⇒ 𝑅𝑛+1 = 𝑅𝑛    

𝑧̂𝑛
𝑉𝐸𝐿 = 1 ⇒ [

𝑅𝑛+1
𝑇 𝑣𝑛+1

𝑏𝑛+1
𝑎 − 𝑅𝑛+1

𝑇 𝑔
] = [

0
𝑎𝑛

] 

𝑧̂𝑛
𝐴𝑁𝐺 = 1 ⇒ 𝑏𝑛+1

𝜔 = 𝜔𝑛 

𝑧̂𝑛
𝐿𝐴𝑇 = 1 ⇒ 𝑣𝑛

𝐿𝐴𝑇 = 0 

𝑧̂𝑛
𝑈𝑃 = 1 ⇒ 𝑣𝑛

𝑈𝑃 = 0 

4. IEKF information fusion 

The Extended Kalman Filter (EKF) has been widely utilized in information fusion within 

the field of inertial navigation [16]. EKF often lacks rigorous convergence proof and suffers 

from system divergence and inconsistency issues. In contrast, the IEKF has ameliorated these 

issues [17]. Therefore, the denoised IMU measurements are integrated into its dynamic model, 

and the constraint information of the detected motion state is used as observations. The IEKF 

is then employed to fuse this information to refine its estimates. The system state 𝑋𝑛 is defined 

as: 

 𝑋𝑛 = [𝑅𝑛, 𝑣𝑛, 𝑝𝑛, 𝑏𝑛
𝜔 , 𝑏𝑛

𝑎], (22) 

where 𝑣𝑛 and 𝑝𝑛 represent the velocity and position under the navigation coordinate frame, 

respectively, 𝑑𝑡  is the time interval between two samplings, and the operator [∙]×  denotes 

a 3 × 3 skew-symmetric matrix. 𝑏𝑛 = [𝑏𝑛
𝜔 , 𝑏𝑛

𝑎]𝑇  represents the biases of the gyroscope and 

accelerometer. Table 2 illustrates how the IEKF exploits the observed motion states during the 

propagation and update stages to modify the corresponding dynamic model of wheeled robots. 

For a more detailed description of the parameter setting methods and the iterative process, 

please refer to [18]. 
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5. Experiments 

In this section, to evaluate the effectiveness of the proposed method, experimental analyses 

were conducted on both the publicly available KAIST dataset and a self-collected dataset. Three 

main evaluation objectives were set to demonstrate that the proposed method overall 

approximates the accuracy of IMU motion recognition methods based on supervised learning: 

1) Verify that the masked IMU modeling and next IMU sequence prediction tasks can denoise 

the IMU. 2) Verify that the motion states recognition method can accurately identify the specific 

motion states of the IMU. 3) Validate the accuracy of the final position estimate. 

5.1. Data sources  

The KAIST URBAN dataset is vehicle data collected in complex urban environments. For 

more detailed information about the dataset, please refer to [12]. The data was divided into 

a training set (urban6-12) and a test set (urban13-17). The original KAIST dataset provides 

medium-precision consumer-grade IMU data, which has higher accuracy compared to the more 

cost-effective MEMS-IMU. Therefore, a certain amount of noise and bias was added to the 

original dataset to simulate the characteristics of MEMS-IMU. Specifically, Gaussian noise 

𝑁(0, 10−3) with random bias 𝐵(0.015, 0.025) was added to the gyroscope data, and Gaussian 

noise 𝑁(0, 10−2) with random bias 𝐵(0.45, 0.55) was added to the accelerometer. 

5.2. Baselines and Metrics definitions 

Due to the current temporary lack of research on SSL-based neural inertial navigation 

methods in the industry, to demonstrate the performance of the system, it is compared with 

three typical supervised learning-based neural inertial navigation methods in the field of 

wheeled robots, namely RINS-W [10], AI-IMU [18], and the method proposed by Guo [20]. 

Each of these methods encompasses some key components such as Inertial Measurement Unit 

(IMU) denoising, motion state recognition, and information fusion. Given the special 

application scenario of the method proposed in this paper, under the harsh condition of having 

no reference data at all, as long as it can be proven that the positioning error of this method has 

no significant difference compared with that of the supervised learning-based methods, the 

effectiveness of the method proposed in this paper can be fully demonstrated. 

Secondly, as the method proposed in this paper consists of three modules, the performance 

of each module is evaluated separately. First, the performance of the IMU denoising module is 

assessed using the absolute attitude error. To evaluate the recognition performance of the 

motion state recognition network, the commonly used measurement 𝐹𝛽=0.5 indices for binary 

classification are utilized, with 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 as precision, 𝑟𝑒𝑐𝑎𝑙𝑙 as recall, and 𝛽 representing the 

relative weight of precision and recall. Finally, the overall positioning performance of the 

proposed method is judged using the Absolute Trajectory Error (ATE,m) and Temporal 

Relative Trajectory Error (T-RTE,m): 

 𝐹𝛽 = (1 + 𝛽2) ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙 ((𝛽2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙)⁄ , (23) 

 𝐴𝑇𝐸 = √
1

𝑁
∑ ‖𝑝𝑛−𝑝̂𝑛‖2𝑁

𝑛=1   ,   𝑇 − 𝑅𝑇𝐸 = √
1

𝑁
∑ ‖𝑝𝑛+∆𝑡−𝑝𝑛 − (𝑝̂𝑛+∆𝑡−𝑝̂𝑛)‖2𝑁

𝑛=1 . (24) 

5.3. IMU denoising performance analysis 

Among the baseline methods, only Guo's method incorporates IMU denoising. Therefore, 

we compare the attitude angle errors obtained from the original gyroscope inertial navigation 
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solution and those obtained from Guo's method respectively. As can be seen from Fig. 7 and 

Table 3, with reference information, Guo's method reduces the average attitude estimation error 

by 67.17%. In contrast, without any additional external reference information, the method 

proposed in this paper reduces the average error by 52.06%. This is sufficient to demonstrate 

the effectiveness of the IMU denoising module. 

 

 

Fig. 7. The AAE of urban16. 

Table 3. The AAE of different methods on the test set. 

Method Raw IMU Guo Ours 

urban13 2.51 1.55 1.84 

urban14 23.54 2.55 10.91 

urban15 0.76 0.16 0.21 

urban16 6.89 0.36 2.97 

urban17 1.44 0.94 0.71 

average 7.028 1.112 3.328 

5.4. Analysis of Motion State Recognition Performance 

The RINS-W method includes a motion state recognition module, so the motion state 

recognition module of this paper is compared with that of the RINS-W method. Table 4 shows 

the accuracy rate of motion state recognition of the method in this paper. It can be seen that the 

motion recognition method based on SSL proposed in this paper is close to the accuracy rate of 

supervised learning. This experiment explored whether adding "other motion states" data 

benefits the motion state recognition network's training. By using t-SNE for dimensionality 

reduction, we visualized the features in 2D (Fig. 8). Without "other motion states" in training, 

the visualization result showed low discrimination among category features. The actual 

accuracy was only 40%-60%, which was far from the high accuracy rate shown in Table 4. 

Focusing only on four zero-velocity types, gyroscope and accelerometer data had small 

numerical differences. Pseudo-labels limited the amount of training data, and self-supervised 

denoising couldn't fully remove noise, making it hard for the network to distinguish data. In 

contrast, "other motion states" data has distinct numerical characteristics. Since contrastive 

learning amplifies data differences, including this data in the training process boosted the 

network's recognition accuracy and overall performance. 
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Table 4. The 𝐹𝛽 of motion state recognition, before and after "|" are the methods proposed in this paper and 

RINS-W, respectively. 

Seq Zero Speed Zero Angular Zero Lateral Zero Vertical Difference 

13 0.72 | 0.95 0.98 | 0.99 0.88 | 0.94 0.73 | 0.95 0.13 

14 0 | 0 0.98 | 0.99 0.93 | 0.96 0.92 | 0.97 0.04 

15 0.85 | 0.97 0.98 | 0.99 0 | 0 0.90 | 0.98 0.07 

16 0 | 0 0.98 | 0.99 0.94 | 0.97 0.95 | 0.97 0.02 

17 0 | 0 0.99 | 0.99 0 | 0 0.95 | 0.98 0.02 

 

a) b) 

  

Fig. 8. Visualization analysis of t-SNE clustering effect: a) the network training does not include the category of 

'other'; b) include the category of 'other' during network training. 

5.5. Analysis of position 

Table 5, Table 6, Fig. 9 and Fig. 10 compare the proposed method with the baseline method, 

ME represents maximum error. The proposed method is essentially on a par with RINS-W in 

terms of motion state recognition accuracy. Meanwhile, its additional denoising step further 

enhances the accuracy of the IMU. This advantage enables the proposed method to exhibit 

excellent comprehensive performance in most driving scenarios, showing a remarkable 

improvement compared with AI-IMU and RINS-W. 

Table 5. Position errors of different methods on Kaist test set for urban13-16. 

Method 
Supervised learning 

Ours 
Supervised learning 

Ours 
AI-IMU RINS-W Guo average AI-IMU RINS-W Guo average 

 urban13 urban14 

ATE 296.76 98.40 256.25 217.14 152.54 767.26 275.77 238.00 427.01 123.31 

T-RTE 1.86 0.50 0.87 1.08 0.61 1.64 1.04 1.04 1.04 0.54 

RMSE 616.27 102.00 325.28 347.85 164.68 785.75 273.08 470.25 509.69 126.45 

STD 262.60 27.95 49.10 113.21 30.35 425.65 116.25 252.39 264.76 54.15 

ME 1265.77 143.42 416.54 608.58 151.20 1429.91 581.66 825.38 945.65 263.92 

 urban15 urban16 

ATE 421.87 386.52 170.68 326.36 174.24 2131.74 1960.23 538.25 538.25 768.77 

T-RTE 1.43 2.01 0.69 1.38 0.96 2.00 1.59 0.66 0.66 0.97 

RMSE 430.94 390.04 276.44 365.81 173.57 2145.22 2150.20 1202.33 1202.33 968.89 

STD 190.85 275.80 117.28 194.64 120.56 1102.31 1086.23 636.97 941.84 488.40 

ME 637.49 718.43 404.11 586.67 316.58 3695.45 3866.49 2067.72 2067.72 1736.25 
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Table 6. Position errors of different methods on Kaist test set for urban17 and all average. 

Method 
Supervised learning Supervised learning  

AI-IMU RINS-W Guo average Ours AI-IMU RINS-W Guo average 
Ours 

 urban17 All averages 

ATE 764.35 1286.63 201.45 750.81 583.53 876.40 801.51 280.926 451.91 360.48 

T-RTE 1.91 3.74 0.59 2.08 1.76 1.73 1.82 0.79 1.40 0.97 

RMSE 747.76 1301.57 775.68 941.67 560.36 945.19 843.38 609.99 673.47 398.79 

STD 413.29 810.50 233.94 485.91 346.19 478.94 463.35 257.936 400.072 207.93 

ME 1369.81 2565.12 775.68 1570.20 1108.78 1679.69 1575.02 897.89 1155.76 715.35 

 

Given that this study does not utilize any additional ground truth and the denoising ability 

of the IMU is limited, among the five groups of data, the performance of three data groups is 

superior to or close to that of Guo's method. 

 
a)  

 
b) c) 

  
d)  

 

Fig. 9. Position comparison of different methods: a) the 2D trajectory map, b) 3D trajectory map, c) thumbnails 

of the ground truth, and d) position error maps of the x-axis for urban16. 

ground truth 
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a) 

 
b) c) 

  
d) 

 

Fig. 10. Position comparison of different methods: a) the 2D trajectory map, b) 3D trajectory map, c) thumbnails 

of the ground truth, and d) position error maps of the x-axis for urban17. 

From the perspective of comprehensive evaluation results, compared with the average 

performance of supervised learning-based methods, the proposed method demonstrates 

significant superiority in the overall average performance of various trajectory error metrics 

(ATE, T-RTE, RMSE, STD, ME). Specifically, the errors in these metrics are reduced by 

20.23%, 30.71%, 40.78%, 48.03%, and 38.11%, respectively. This outcome far exceeds the 

pre-set expectations. It fully verifies that the proposed method has outstanding advantages in 

terms of the accuracy, stability of trajectory estimation, and error control, and can rival 

supervised learning-based IMU neural inertial navigation methods. 

5.6. Real Scenario Evaluations 

The method in this paper was also tested using self-made dynamic and static datasets. As 

shown in Fig. 11, the dynamic data was collected by wheeled robots in the real campus 

ground truth 
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environment. The model of the MEMS-IMU is EPSON's M-G370, and the zero bias instability 

of the gyroscope is 0.8°/h, with a sampling frequency of 150 Hz. The sampling frequencies of 

the Global Navigation Satellite System (GNSS) receiver and the camera were 1 Hz and 15 Hz 

respectively. The timestamps among different sensors were synchronized by software. 

When conducting static data collection work, the low-cost multi-IMU array module of the 

MIMU48XC model produced by GT SILICON PVT LTD is selected. This module integrates 

32 MEMS-IMUs of the ICM20948 model. The purpose of collecting the static data was to 

evaluate the denoising effect of the IMU through Allan variance analysis. Both the dynamic 

data and the static data were collected in 25 sets respectively. Among them, 20 sets were used 

for training, and the remaining 5 sets were reserved for testing. 

The Allan variance method is a commonly used error analysis approach in the field of inertial 

navigation [21]. Intuitively, the lower the curve is located, the smaller the error will be. 

Figure 13 and Table 7 demonstrate that the random errors of the gyroscope and accelerometer 

have been significantly improved before and after applying the method proposed in this paper. 

Table 8 and Fig. 14 display the comparison of the position estimation performance between 

the proposed method and the baseline methods on the self-made dynamic dataset. It is worth 

noting that even when the small wheeled robot and the cars used in the public datasets are 

traveling on the same flat road, the small robot will be more significantly affected by vibrations. 

Therefore, methods equipped with motion state recognition components will perform better in 

this scenario. Thanks to the crucial role of the motion state components, among the 5 sets of 

test data, four sets of them, the position errors of the SSL-based method proposed in this paper 

are even smaller than the average value of the supervised learning-based methods, which 

demonstrates the effectiveness of the method proposed in this paper. 

 
a) b) c) 

   

Fig. 12. Partial real scene diagrams: (a) is the wheeled robot used in the experiment, (b) is the MEMS-IMU 

module for collecting static data and (c) is the outdoor collection scene. 

 
a) b) 

  

Fig. 13. Double logarithmic curve of Allan variance before and after denoising: (a) is gyroscope data and (b) is 

accelerometer data. 
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Table 7. Allan variance of output data before and after IMU denoising. 

Noise type 
Raw IMU Proposed method 

x-axis y-axis z-axis x-axis y-axis z-axis 

Angle random walk (°/√ℎ𝑟) 1.980 1.919 4.461 0.005 0.006 0.003 

Rate random walk (°/√ℎ𝑟3)) 4543.728 >5000 >5000 16.854 21.274 10.722 

Gyro bias instabilities (°/ℎ𝑟) 163.298 141.562 177.411 0.517 0.626 0.319 

Velocity random walk (𝑚/𝑠/√ℎ𝑟) 0.006 0.006 0.005 <0.001 <0.001 <0.001 

Acceleration random walk (𝑚/𝑠/√ℎ𝑟3) 7.001 7.54 4.096 2.566 1.859 1.535 

Acceleration bias instabilities (𝑚/𝑠/ℎ𝑟) 0.190 0.166 0.107 0.075 0.0546 0.0438 

 

Table 8. Position errors of different methods on self-made datasets. 

Method 
Supervised learning 

Ours 
AI-IMU RINS-W Guo average 

denoise | motion | IEKF ×|×|√ ×|√|√ √|×|√  √|√|√ 

Test1 
ATE 920.91 343.61 969.19 744.57 313.91 

T-RTE 1.50 0.54 1.59 1.21 0.50 

Test2 
ATE 1039.09 777.37 1023.05 946.50 779.09 

T-RTE 1.64 1.01 1.62 1.42 1.00 

Test3 
ATE 46.87 49.82 49.64 48.78 47.38 

T-RTE 0.41 0.42 0.41 0.41 0.41 

Test4 
ATE 175.16 111.46 169.58 152.07 119.32 

T-RTE 0.65 0.34 0.63 0.54 0.37 

Test5 
ATE 185.06 179.66 172.75 179.16 184.73 

T-RTE 1.21 1.21 1.16 1.19 1.17 

 
a) b) c) 

   

 

Fig. 14. (a), (b) and (c) are trajectory visualizations of the real-world. 

6. Conclusion 

In this paper, a neural inertial navigation method for low-cost wheeled robots that can 

achieve fully autonomous pose estimation without relying on external information is proposed. 

The feature extraction capability of the BERT network is utilized to denoise the IMU. At the 

same time, based on self-supervised contrastive learning and the method relying on unreliable 

pseudo-labels, the motion state labels corresponding to the IMU sequences in different time 

periods are obtained, and IEKF is used to further fuse the motion state information and IMU 

information to enhance the reliability and accuracy of the system. The proposed method was 
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verified on the public dataset and self-collected dataset in real scenes. Experiments conducted 

on public datasets demonstrate that, in the absence of additional ground truth values, the 

Absolute Trajectory Error (ATE) and Temporal Relative Trajectory Error (T-RTE) of the 

proposed method are 20.23% and 30.71% lower than those of supervised learning based 

methods, respectively. The experimental results show that our position estimation can be 

comparable to the existing supervised learning-based inertial navigation methods for wheeled 

robots in both local and global accuracy. 
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