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Abstract 

The kinematic parameter errors of parallel robot are affected by manufacturing errors, assembly errors, and shape 

errors caused by heavy loads, resulting in a gradual decrease of its kinematic accuracy. This study proposes an 

online learning method for the kinematic parameter errors based on a six-degree-of-freedom (6-DOF) in-situ 

tracking system, which achieves their online identification. This method uses the six high-precision measurement 

legs that are embedded into the parallel robot to achieve in-situ data measurement, and adopts an online learning 

method to identify of the kinematic parameter errors. Experimental results compared with the least squares method 

demonstrated that the proposed method effectively achieves online identification of kinematic parameter errors, 

with position and orientation accuracy improved by 85.3% and 79.2%, respectively. Moreover, it can also maintain 

small position deviations even under varying loads, thus sustaining the high-accuracy motion of parallel robot. 

Keywords: kinematic parameter errors, online learning, parallel robot, in-situ tracking system. 

1. Introduction 

Parallel robots utilize a distinct closed-loop structural design [1, 2], compared to serial 

mechanisms, which exhibit faster dynamic response, higher payload-to-weight ratio, and better 

repeatability. Consequently, parallel robots are widely utilized in the fields of manufacturing 

[3-5], biomedical engineering [6], and aerospace [7], which in turn demand higher precision 

performance. Due to the manufacturing errors, assembly errors, and shape errors caused by 

heavy loads, the kinematic parameters of parallel robots vary over time, resulting in a gradual 

decrease in their kinematic accuracy. Therefore, it is crucial to develop a method capable of 

real-time measurement, online identification, and correction of kinematic parameter errors for 

the parallel robot. 

Currently, kinematic calibration is the primary method to enhance precision. The principle 

involves constructing an error function between the measured information and the control 

model output. Through optimization algorithms, kinematic parameters are identified to correct 

the control model. This identification process achieves error compensation. Kinematic 

calibration generally comprises four steps: modeling of kinematic parameter errors, 

measurement of pose, identification of kinematic parameter errors, and compensation of 

parameter error. Based on the different measurement approaches, kinematic calibration can be 

further classified into three methods: external calibration, constrained calibration, and self-

calibration [8]. Correspondingly, the current kinematic calibration methods of parallel 

mechanisms are summarized in Table 1. The measurement devices mainly include laser trackers 

[9-11] and vision sensors [12-15], where the laser tracker is the most commonly used. 

Kong et al. [16] utilized an API-T3 laser tracker to achieve external calibration of a 3-DOF 

parallel robot, Marko et al. [17] obtained the spatial coordinates of the robot through a stereo 
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vision system for external calibration. Although external calibration methods can provide high-

precision calibration results, the implementation process is relatively complex and easily 

affected by environmental factors. Li et al. [18] proposed a calibration method for over-

constrained spatial translational parallel mechanisms, which significantly improved the 

calibration accuracy. However, the calibration accuracy relies on the precision and stability of 

the constraint conditions. Self-calibration techniques can be classified into motion constraint 

methods and redundant sensor methods. The former reduces the mobility of the system by 

fixing one or more passive joints or constraining partial degrees of freedom of the manipulator, 

enabling the execution of the calibration algorithm. Khalil et al. [19,20] achieved self-

calibration by locking the fixed passive universal joint or passive spherical joint of parallel 

robots. However, due to the presence of motion constraints, some parameter errors associated 

with the locked passive joints may become unobservable in the calibration algorithm, limiting 

the accuracy of the calibration. Another approach is the redundant sensor method, which utilizes 

excess sensors or measurement information in the system. identification of kinematic parameter 

errors and calibration can be achieved. Zhang et al. [21-23] proposed using redundant encoders 

and additional cameras for the self-calibration of cable-driven parallel robots. However, these 

methods suffer from complex data processing procedures, difficulties in integrating external 

auxiliary devices (cameras and lasers) with the system, and are unable to monitor changes in 

kinematic parameter errors online. 

This study has developed an in-situ pose measurement system for a 6-DOF parallel robot. 

Based on this measurement system, an online learning method for identifying the kinematic 

parameter errors of the 6-DOF parallel robot is proposed. The method achieves online 

identification of the parallel robot's kinematic parameter errors through the in-situ pose 

measurement system and an extended Kalman filter (EKF) algorithm. Compared with 

traditional offline identification methods, the EKF can estimate parameter changes online. The 

main contributions of this research include: (a) A 6-DOF in-situ tracking system integrated 

within the parallel robot has been designed, which enables online measurement of the pose of 

the parallel robot. (b) An online learning method for kinematic parameter errors, based on the 

6-DOF in-situ tracking system, has been proposed to achieve online identification of kinematic 

parameter errors in the parallel robot. (c) The effectiveness of the proposed method is verified 

through comparative experiments, demonstrating its capability to monitor kinematic parameter 

errors online and maintain high kinematic accuracy of the parallel robot. 

The rest of the manuscript is organized as follows: Section II presents a detailed description 

of the 6-DOF in-situ tracking system. Section III presents the kinematic parameter error model 

of parallel robot and the online learning algorithm. Section IV describes the kinematic 

calibration experiments conducted on the parallel robot. Section V conducts the conclusions. 

Table 1. Summary of related works for parallel mechanism kinematic calibration. 

Parallel mechanism Measurement device 
Achieved 

accuracy (mm) 
Identification method 

3-PRRU parallel manipulator [16] laser tracker 0.21 Total Least-square 

Tri-pyramid robot [18] 

double ball bar and 

3 axes linear stage with 

micrometers 

0.16 Least-square 

6-DOF hybrid robot [20] laser tracker 0.05 
Least-square 

Liu-estimation 

6-DOF cable-driven parallel robots [21] camera 1.65 Least-square 

6-DOF cable-driven parallel robots [22] laser displacement sensors 1.40 Genetic algorithms 

Stewart platform [23] laser tracker 0.20 Levenberg-Marquardt 
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2. The 6-DOF in-situ tracking system 

Figure 1 illustrates a schematic diagram of kinematic parameter errors online identification 

for a parallel robot based on a 6-DOF in-situ tracking system. (I) represents the processing unit, 

(II) denotes the parallel robot, and (III) signifies the 6-DOF in-situ tracking unit. The processing 

unit controls the parallel robot to perform spatial trajectory motions through a human-machine 

interface. The measurement legs of the 6-DOF in-situ tracking unit consist of high-precision 

grating rulers, sliders, reading heads, and guide rails, these measurement legs and the driving 

legs are connected to the same moving platform and fixed base. The guide rails move linearly 

in a reciprocating motion with the moving platform. This motion drives the grating rulers to 

move accurately, thereby achieving real-time tracking of the parallel robot motion trajectory. 

the combination of the measuring legs with the moving platform and fixed base of the parallel 

robot can be considered another parallel mechanism. Through forward kinematics [24-26], the 

current leg length data of the six measuring legs can be converted into the actual pose of the 

parallel robot. The tracking system has been precisely calibrated using stereo vision technology 

[27]. The nominal kinematic parameters of the six measurement legs are listed in Table 2. 

Specifically, hi = [hxi, hyi, hzi]
T denotes the upper joint bearing position information, 

zi = [zxi, zyi, zzi]
T denotes the lower joint bearing position information, and lsi represents the 

initial length information of the measurement legs. Finally, the processing unit reads the 

tracking data. It then achieves online identification of the 42 kinematic parameter errors of the 

parallel robot through an online learning method based on EKF. 

Table 2. Nominal kinematic parameters of the measurement legs. 

i hix/mm hiy/mm hiz/mm zix/mm ziy/mm ziz/mm lsi/mm 

1 231.600 -104.850 -127.210 728.280 41.410 108.790 1029.480 

2 206.600 -148.150 -127.210 328.280 -651.410 108.790 1029.480 

3 -206.600 -148.150 -127.210 -328.280 -651.410 108.790 1029.480 

4 -231.600 -104.850 -127.210 -728.280 41.410 108.790 1029.480 

5 -25.000 253.000 -127.210 -400.000 610.000 108.790 1029.480 

6 25.000 253.000 -127.210 400.000 610.000 108.790 1029.480 

 

3. Kinematic parameter error identification based on online learning algorithm 

3.1.  Kinematic error model of parallel robot  

As shown in (II) of Fig. 1, the Hooke joints at both ends of the driving legs connect the 

moving platform and the fixed base. Under the drive of the servo motors, the moving platform 

can translate and rotate along each axis. As shown in Fig. 2, coordinate systems {D} and {J} 

are established on the moving platform and the fixed base of the parallel robot, respectively. 

Here, the coordinate system {D} serves as a local coordinate system, with its origin located at 

the geometric center of the upper surface of the moving platform of the parallel robot. 

Meanwhile, coordinate system {J} is located on the fixed base of the parallel robot, serving as 

the global coordinate system for the entire system. It provides a unified reference for describing 

the position and motion of various components within the system, and its origin is located at 

the geometric center of the upper surface of the base. Di and Ji are the hinge connection points 

of the Hooke joints with the moving platform and the fixed base. The length li is the distance 

between the upper hinge point di = [dxi, dyi, dzi]
T and the lower hinge point ji = [jxi, jyi, jzi]

T. 
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Fig. 1. Schematic diagram of the kinematic parameter error online identification in parallel robots: (I) processing 

unit, (II) parallel robot, (III) 6-DOF in-situ tracking unit. 

 

Fig. 2. Kinematic analysis of the parallel robot: (a) kinematic scheme, (b) closed-loop vector of li. 

The kinematic parameter errors of the aforementioned parallel mechanism include the hinge 

error of the moving platform δdi, the hinge error of the fixed base δji, and the length error of the 

driving leg δli. By compensating for these 42 kinematic parameter errors, the accuracy of the 

parallel robot can be ensured across various motion trajectories, which ensures precise control 

and high repeatability. As illustrated in Fig. 2(b), the closed-loop vector equation for the ith path 

within the kinematic error model is 

 i i ψ i il = + −n h R d j , (1) 

where ni is defined as the unit vector of li, and h denotes the position vector oriented from the 

origin of the base coordinate system to the origin of the moving platform coordinate system. 

Additionally, RΨ represents the rotation matrix involved. The left and right of (1) are fully 

differentiated to obtain the closed-loop differential equations. 
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 i i i i ψ i ψ i il l     +++ = −n n h R d R d j  (2) 

 i i i i ψ i ψ i il l     + ++ = −n n h R d R d j , (3) 

where the rotation matrix RΨ is usually determined by Euler angles α-β-γ, with the detailed 

rotation definitions provided in the Appendix, the relation between ω and Euler angles is 

 =T   (4) 

where the T matrix represents the conversion between the angle ω in radians and the angular 

velocity δθ, T and RΨ can be expressed as 
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where c and s represent cos and sin, respectively. substitute (4) into (3), then multiply both sides 

by nT
i to get 

 
T T T T T T)(i i i i i i i i ψ i i ψ i i il l     + = ++  −n n n n n h n T R d n R d n j , (6) 

where nT
i li δni = 0, nT

i ni δli=δli, and then 

 
T T T T)(i i ψ i i i ψ i i il    = + −+ n h R d n T n R d n j , (7) 
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 p =E J M , (9) 

where δE = [δh, δθ] T ∈ R6x1 represents the pose error vector, which indicates errors in position 

and orientation. Meanwhile, δM = [δj1
T, δd1

T, δl1 … δj6
T, δd6

T, δl6]
T, δM ∈ R42x1 represents 42 

kinematic parameter errors, which include 6 leg length errors and 36 positional errors of the 

Hooke joints. JP denotes the error Jacobian matrix, with JP = JrJs, and JP ∈ R6x42, the definition 

of the error Jacobian matrix is detailed in the Appendix: 
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The ji and di can be expressed as 

 
T=    = {1,2,...,6}[ ]i xi yi zij  jj i，j , (12) 

 
T=    = {1,2,...,6}[ ]i xi yi zid  dd i，d . (13) 
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The online learning algorithm discussed in the subsequent section will utilize (9) for the 

precise estimation of these parameters. 

3.2. Online learning algorithm 

EKF is an online learning algorithm that relies on the assumption of independent and 

identically distributed (i.i.d.) data. The EKF algorithm can accurately and effectively perform 

state estimation and prediction only when the i.i.d. assumption is satisfied. In this study, the 

position points of the upper Hooke joints (denoted as di) in the 6-DOF parallel robot are defined 

as fixed points in the local coordinate system, with these positions determined by the pose of 

the moving platform. Therefore, the position points di of the upper Hooke joints and the leg 

lengths li can be considered mutually independent. This ensures that the error model satisfies 

the i.i.d. assumption required by the EKF algorithm. In this framework, the kinematic parameter 

errors δM and the pose error δE are treated as the state and observation variables of the EKF, 

denoted respectively by X = δM and Y = δE. The algorithm includes two main phases: 

prediction and update. During the prediction phase, the state vector X and the prediction 

covariance matrix P are governed by the following linear differential equations, based on (9), 

with Xk-1|k-1 = δM, and Jk = JP. The state transition equation of EKF is 

 =k|k-1 k-1|k-1X X , (14) 

 = +k|k-1 k-1|k-1 k-1P P Q , (15) 

where Xk-1|k-1 ∈ R42x1 represents the prior estimate at the (k−1)th, and Xk|k-1 denotes the posterior 

estimate. Additionally, Pk-1|k-1 ∈ R42x42 signifies the covariance matrix, and Qk-1 ∈ R42x42 is the 

covariance matrix of the system noise. 

The measurement equation of the EKF is 

 = +k k k kY J X E , (16) 

where Yk ∈ R6x1 is the pose error vector, and Ek ∈ R6x1 is the measurement noise vector. 

The Kalman gain can be expressed as 

 ( )
1

T
T

k k|k-1 k k k|k-1 k k

-

K = P J J P J + R , (17) 

where Kk ∈ R42x6 is the gain matrix, and Rk = E(EkEk
T) ∈ R6x6 is the measurement noise covariance 

matrix. 

The state update equation and the covariance update equation are as follows: 

 k|k k|k-1 k k k k|k-1( )X = X + K Y - J X , (18) 

 k|k k k k|k-1( )P = I - K PJ , (19) 

where I ∈ R42x42 is the identity matrix. 

During the online identification process of kinematic parameter errors, the computational 

complexity of the algorithm directly affects its real-time performance. Consequently, a detailed 

analysis of the computational complexity of the EKF was conducted, with the specific results 

summarized in Table 3. 

Table 3 quantifies the computational cost of the EKF method using the number of 

multiplication/division (×/÷) and addition/subtraction (+/-) operations as metrics. Among these, 

the calculation of the Kalman gain and the covariance update account for the majority of the 

computational overhead. However, the computational cycle remains shorter than that of the 
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control system, meeting the requirements for online identification of kinematic parameter errors 

in the parallel robot. 

Table 3. The computational complexity of the EKF. 

Equation Complexity ×/÷ +/- 

Pk|k-1 = Pk-1|k-1+Qk-1 O(n 2) 0 1764 

Yk = Jk Xk +Ek O(mn) 252 252 

Kk = Pk|k-1 Jk
 T (Jk

 Pk|k-1Jk
 T +Rk)-1 O(mn 2+ m2 n +m3) 24408 21924 

Xk|k = Xk|k-1+ Kk (Yk - Jk Xk|k-1) O(mn) 504 504 

Pk|k = (I- KkJk ) Pk|k-1 O(n 3+ mn 2) 84672 84420 

 

During each iteration, the covariance matrices Q and R of the EKF are iteratively updated 

[28]. The accuracy of the measurement devices can be used as the initial estimate for the 

covariance matrix R. Based on the aforementioned error model and the EKF algorithm, the 

identification process of the kinematic parameter errors for the parallel robot is shown in Fig. 3. 

The detailed steps of this process include: 

Step 1: To determine the actual pose Pv of the parallel robot, we first collect length 

measurements from the six grating rulers while the robot is held in a static pose. These leg 

length values are then used as inputs for forward kinematic calculations using the Newton-

Raphson method [29]. This process converts the leg length data into the corresponding pose, 

represented by Pv. 

Step 2: Calculate the difference between the current nominal pose Pm and the actual pose 

Pv, as well as the error Jacobian matrix Jk under the current nominal pose Pm. 

Step 3: Input the pose error Pm-Pv and the error Jacobian matrix Jk into the EKF to achieve 

online identification of the 42 kinematic parameter errors. 

Step 4: After identifying the error δv in the kinematic parameters, add the error value δv to 

the nominal parameter v thereby updating the kinematic model of the parallel robot for 

calibration. 

4. Experimental validation and results 

4.1. Experimental system 

To verify the feasibility of the proposed online measurement method based on the 6-DOF 

in-situ tracking system and the online learning algorithm described in Section 3, a kinematic 

calibration experiment was designed using the Stewart platform. The experimental setup is 

shown in Fig. 4. Figure 4(a) presents the Beckhoff controller, which comprises an embedded 

control module and a power module. This controller connects to the motion control software 

TwinCAT3.0 to achieve system control and data transmission. Figure 4(b) illustrates the 

Renishaw reading head. Its working principle involves emitting a light beam with a high-

intensity light source, which is converted into parallel light by a collimating lens. The beam is 

then separated by a beam splitter and directed onto a grating. The grating modulates the beam, 

which alters its path and intensity. The modulated beam is focused by a detection lens onto 

a high-speed custom detection array, which converts the light signal into an electrical signal. 

After signal processing, the system outputs precise position information. The resolution of the 

grating ruler is 50 nm, and the measurement range is -276 to 318 mm. Figure 4(c) displays the 

Stewart platform, with displacement ranges along the x, y, and z axes of -200 to 200 mm and 

orientation ranges of -20° to 20°. 
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Fig. 3. The calibration procedure of the proposed method. 

 

Fig. 4. Experimental setup: (a) controller module, (b) internal structure of the reading head, (c) motion 

generation device. 

The experiment consists of two parts: static pose comparison and dynamic trajectory 

comparison. Throughout the load variation process, the EKF was employed to perform online 

identification of kinematic parameter errors. Subsequently, the Stewart motion platform was 

calibrated using the identified parameters. The calibration results obtained from the EKF were 

then compared and analyzed against those derived from the least squares method. During the 

identification process using the EKF, the system noise covariance matrix Q was initialized as 

10−5 × I42x42, and the measurement noise covariance matrix R was initialized as 4×10−2 ×I6x6. 

Additionally, prior to conducting the experiments, a comparative study was performed with 

a high-precision binocular vision instrument (AICON MoveInspect XR) to validate the 

accuracy of the proposed measurement device. The experimental results showed that, compared 

with the binocular vision instrument, the proposed measurement device had an average position 

error of 0.036 mm and an average orientation error of 0.022°. 
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4.2. Comparison of static poses 

The EKF was applied to identify the kinematic parameter errors of the Stewart platform, 

according to the identification process depicted in Fig. 3. The identified kinematic parameter 

errors under the no-load conditions are presented in Fig. 5. 

Figure 5 shows six subplots, each with seven curves representing the kinematic parameter 

errors for each drive leg, including errors in the positions of the upper and lower Hooke joints 

and the lengths of the drive legs. Additionally, Fig. 5 demonstrates the rapid convergence of 

the EKF in identifying kinematic parameter errors. Table 4 lists the 42 kinematic parameter 

errors identified by both the EKF and the least squares method under no-load conditions. 

As the primary external disturbance, the payload can cause variations in the kinematic 

parameter errors of parallel robots, which significantly affects the kinematic accuracy [30, 31]. 

Traditional methods were incapable of monitoring the variations of kinematic parameter errors 

online. To address this, the Stewart platform was first calibrated using the data in Table 4. Then, 

a payload was applied, and the variations of kinematic parameter errors under payload 

conditions were identified using the EKF method. The experimental results are shown in Fig. 6. 

 

 

Fig. 5. Identification of kinematic parameter errors by the EKF algorithm. 

Table 4. The identified kinematic parameter errors (mm). 

 LS EKF 

Leg i δjxi δjyi δjzi δdxi δdyi δdzi δli δjxi δjyi δjzi δdxi δdyi δdzi δli 

1 0.146 -1.560 -2.819 -2.564 -2.675 0.006 -0.413 0.118 -1.374 -2.660 -2.285 -3.207 0.281 -0.186 

2 -0.237 -0.160 -2.762 -3.379 -2.941 -0.190 0.276 0.427 1.754 -0.219 -3.148 -3.205 0.266 -2.631 

3 0.018 -0.071 -2.398 -3.296 2.561 -0.017 0.686 0.140 -0140 -2.243 -3.251 2.046 -0.463 -0.143 

4 1.348 -1.765 3.271 -1.041 3.339 0.287 -1.384 0.195 -0.484 1.876 -1.949 3.756 -0.789 -0.531 

5 1.574 -0.254 3.774 2.361 0.723 0.949 -1.788 -0.472 -0.397 1.514 1.459 1.399 0.378 0.126 

6 0.225 -1.046 -2.167 2.033 -0.928 0.977 0.746 -0.797 -2.545 -0.861 2.745 -0.729 -0.351 -2.352 

 

(a) (b) (c)

(d) (e) (f)
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As shown in Fig. 6, the kinematic parameter errors of the Stewart platform changed 

significantly after the payload was applied. To address the impact of variations in kinematic 

parameter errors on the kinematic accuracy of the Stewart platform, calibration experiments 

were conducted under payload conditions of 20 kg and 40 kg, respectively. The experimental 

results are presented in Fig. 7 and Table 5. 

 

 

Fig. 6. Online identification of kinematic parameter errors. 

 

Fig. 7. Pose errors before and after calibration: (a) position error, (b) orientation error. 

Table 5. Comparison of pose errors before and after kinematic calibration. 

Pose errors 
Before 

calibration 

After calibration 

LS EKF 

data1 data2 datat3 data1 data2 data3 

Position (mm) 3.9243 0.0734 0.1926 0.3854 0.0403 0.0398 0.0156 

Orientation (°) 0.8524 0.0459 0.0552 0.0661 0.0124 0.0123 0.0103 

(a) (b) (c)

(d) (e) (f)

(a) (b)
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In Fig.7, since the least squares method was unable to identify the variations in kinematic 

parameter errors, only the initial calibration under no-load conditions was performed. In 

Table 5, data1 represents the calibration data under no-load conditions, data2 represents the 

calibration data with a 20 kg load, and data3 represents the calibration data with a 40 kg load. 

Before calibration, the Stewart platform had a position error of 3.9243 mm and an orientation 

error of 0.8524°. After calibration, the least squares method increased the average position error 

from 0.0734 mm to 0.1926 mm, and eventually reached 0.3854 mm. The mean value of the 

position errors across the three trials was 0.2171 mm. The average orientation error increased 

from 0.0459° to 0.0552°, and eventually reached 0.0661°. The mean value of the orientation 

errors across the three trials was 0.0557°. In contrast, the proposed method reduced the average 

position error from 0.0403 mm to 0.0398 mm, eventually lowered it to 0.0156 mm. The mean 

value of the position errors across the three trials was 0.0319 mm. The average orientation error 

decreased from 0.0124° to 0.0123°, eventually dropped to 0.0103°. The mean value of the 

orientation errors across the three trials was 0.0116°. Compared to the least squares method, the 

proposed approach improved position accuracy and orientation accuracy by 85.3% and 79.2%, 

respectively, in terms of average position and orientation errors over three calibrations. 

4.3. Comparison of dynamic trajectories  

The aforementioned experimental results clearly demonstrated that the motion accuracy of 

the Stewart platform gradually decreased over time when the traditional calibration method was 

applied. To more intuitively monitor this change, a circular trajectory experiment was 

specifically designed. Under the application of an external load, the deviation of the parallel 

robot's motion trajectory was observed, while the proposed kinematic calibration method was 

employed and compared with the traditional calibration method. All experimental settings were 

kept consistent with those of the static pose comparison experiment to ensure the uniformity of 

experimental conditions and the reliability of the results, thereby enabling a more accurate 

evaluation of the performance differences between the different calibration methods. 

Figure 8 clearly illustrates the variation of the Stewart platform trajectory before and after 

calibration. After calibration using the least squares method, the actual motion trajectory 

diverged from the theoretical trajectory due to external loads. To analyze this deviation data 

more clearly, the position deviations between the actual and theoretical trajectories are 

represented in a polar coordinate system, as shown in Fig. 9. The corresponding data are 

summarized in Table 6. 

Table 6 illustrates the influence of load on the kinematic accuracy of the Stewart platform. 

After calibration using the least squares method, the position deviation increased from 0.0771 

mm to 0.2937 mm, ultimately reached 0.6223 mm, with an average position deviation of 0.3310 

mm. In contrast, the proposed method consistently maintained the required kinematic accuracy, 

with position deviations were 0.0515 mm, 0.0769 mm, and 0.0564 mm, with an average 

position deviation of 0.0616 mm. Compared to the least squares method, the proposed method 

reduced the average position deviation by 81.4%, across three trials. 

4.4. Discussion 

In the static pose comparison experiment, Fig. 5 demonstrates the rapid convergence of the 

EKF in identifying kinematic parameter errors. The applied load on the motion platform of the 

Stewart platform caused gradual changes in the 42 kinematic parameter errors, as shown in 

Fig. 6. The co-axial error curves on each drive leg were symmetrical, whereas the error curves 

for the lengths of the six legs did not exhibit the same variation trend. This discrepancy was 

likely because the load was not centered on the motion platform. Figure 7 illustrates the 
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variation of pose errors during the continuous change of kinematic parameter errors in the 

Stewart platform. As the least squares method fails to identify the kinematic parameter errors 

of the Stewart platform online, the pose error gradually increases. Compared to the least squares 

method, the EKF not only corrected errors using observations (e.g., pose errors) but also 

dynamically updated state estimations through an error prediction model. In contrast, the 

method proposed in this study effectively monitored the changes in kinematic parameter errors, 

which enabled the pose error to decrease progressively. The position error decreased from an 

initial 0.0403 mm to 0.0398 mm and finally reached 0.0156 mm; simultaneously, the orientation 

error also reduced from 0.0124° to 0.0123° and ultimately decreased to 0.0103°. 

 

 

Fig. 8. Comparison of circular trajectories before and after calibration: (a) trajectory comparison before 

calibration, (b)-(d) trajectory comparison after calibration. 

 

Fig. 9. The positional deviations before and after calibration: (a) the positional deviations based on the LS, (b) 

the positional deviations based on the EKF. 

(a) (b)

(c) (d)

(a) (b)

LS EKF
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Table 6. Comparison of deviation before and after kinematic calibration. 

Deviation Trajectory 
Before 

calibration 

After calibration 

LS EKF 

Stage1 Stage2 Stage3 Stage1 Stage2 Stage3 

position 

deviation (mm) 
Circle 2.5334 0.0771 0.2937 0.6223 0.0515 0.0769 0.0564 

 

To clearly observe the influence of kinematic parameter error variations on the motion 

trajectory, a dynamic trajectory experiment was designed. As clearly shown in fig. 8, under the 

influence of external loads, the actual motion trajectory of the Stewart platform gradually 

deviated from the predetermined nominal trajectory. In contrast, the motion trajectory obtained 

using the proposed method highly coincided with the nominal trajectory. Furthermore, by 

comparing Fig. 9(a) and 9(b), it was observed that the smoothness of the compensated trajectory 

was suboptimal, primarily due to external disturbances. 

5. Conclusions 

This study developed an in-situ measurement system for a 6-DOF parallel robot, which 

enables online pose measurement. Based on this system, an online learning method for 

kinematic parameter errors of the 6-DOF parallel robot was proposed. This method utilized the 

measurement system and the EKF algorithm to obtain the current kinematic parameter errors 

of the parallel robot online. To validate the effectiveness of the proposed method, calibration 

experiments were conducted and compared with the traditional least squares method. Through 

the analysis of experimental results, the following conclusions are drawn: 

(1) Compared to traditional measurement methods, the proposed approach enabled online 

measurement of the pose of the parallel robot and was more easily integrated with the parallel 

robot system. Moreover, this method demonstrated significant advantages in terms of data 

processing. 

(2) This method enabled online monitoring of the variations in kinematic parameter errors 

of the parallel robot, thereby ensuring the kinematic accuracy of the parallel robot. 

(3) The experimental results demonstrated that the proposed method effectively identified 

the kinematic parameter errors of the Stewart platform online. In the calibration experiments, 

compared with the least squares method, the proposed method significantly improved the 

positioning accuracy and orientation accuracy by 85.3% and 79.2%, respectively, for static 

poses. Additionally, it reduced positional deviations by 81.4%, for dynamic trajectories. The 

experimental results further validate that the proposed method effectively maintains high 

kinematic accuracy under varying external loads. 

Future work will focus on further optimizing the online learning algorithm to improve 

computational efficiency and enhance disturbance resistance. Additionally, efforts will be made 

to extend the application of this method to various types of parallel robots, exploring broader 

application prospects. 

Acknowledgements  

This work was supported part by National Natural Science Foundation of China (52075512, 

62203132, 52265066,); Fundamental Research Funds for National Institute of Metrology of 

China (No. AKYZD2302); National Key R&D Program of China (2021YFF 0600103, 

2022YFF0609400); Youth Science and Technology Talents Development Project of Guizhou 



F. Ren et al.: 6-DOF IN-SITU TRACKING SYSTEM-BASED KINEMATIC PARAMETERS ONLINE LEARNING ... 

 

Education Department (No. Qianjiaohe KY [2022]138); Doctor Foundation Project of Guizhou 

University (No. GDRJ [2020]30). 

Appendix 

In this study, Euler angles (RPY) are used to represent the orientation of the parallel 

mechanism due to their clear physical interpretation, which enables an intuitive description of 

the mechanism's rotation about three mutually perpendicular spatial axes: roll, pitch, and yaw. 

Specifically, roll represents rotation around the x-axis, pitch represents rotation around the 

y-axis, and yaw represents rotation around the z-axis. The rotation sequence of the Euler angle 

transformation is as follows: 

 ( , , ) ( , ) ( , ) ( , )       RPY z y x     = =ψR R R R  (20) 

The rotation sequence first involves a rotation by an angle γ around the z-axis, followed by 

a rotation by an angle β around the y-axis, and finally a rotation by an angle α around the 

x-axis. The corresponding rotation matrix expressions are as follows: 

 

c -s 0 c 0 s 1 0 0

( , ) s c 0     ( , ) 0 1 0    ( , ) 0 c s

0 0 1 s 0 c 0 s c

z y x

   

      

   

     
     

= = = −
     
     −     

R R R . (21) 

The rotation matrix is utilized to describe the rotational state of the moving platform relative 

to the fixed platform. Additionally, during the coordinate transformation process, it facilitates 

the conversion of points on the moving platform from the local coordinate system to the global 

coordinate system. 

In the kinematic error modeling of the Stewart platform, the kinematic parameter errors 

primarily include the drive leg length errors, the center point position errors of the upper Hooke 

joint, and the center point position errors of the lower Hooke joint. The error Jacobian matrix 

is derived by taking partial derivatives of the Stewart platform's kinematic equations, and it is 

used to describe the relationship between the platform's pose errors and kinematic parameter 

errors. 
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