
Metrol. Meas. Syst., Vol. 32 (2025), No. 2 

DOI: 10.24425/mms.2025.154334 

_____________________________________________________________________________________________________________________________________________________________________________________ 

Copyright © 2025. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0 http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use, 

distribution, and reproduction in any medium, provided that the article is properly cited, the use is non-commercial, and no modifications or 

adaptations are made. 
Article history: received November 14, 2024; revised January 10, 2025; accepted February 12, 2025; available online April 10, 2025. 

 

METROLOGY AND MEASUREMENT SYSTEMS 

Index 330930, ISSN 0860-8229 

www.metrology.wat.edu.pl  

A TWO-STAGE ADAPTIVE IDENTIFICATION FRAMEWORK OF TIRE ROAD 

FRICTION COEFFICIENT CONSIDERING THE EFFECT OF MULTIPLE 

UNKNOWN MEASUREMENT NOISES 

Fengjiao Zhang1), Bo Zhang1), Lanchun Zhang2), Ting Meng3), Yan Wang4) 

1) Changzhou Vocational Institute of Mechatronic Technology, College of Transportation Engineering, 26 Mingxin Middle Road, 213164 

Changzhou, China 
2) Jiangsu University of Technology, School of Automotive and Traffic Engineering, 1801 Zhongwu Road,213001 Changzhou, China 

3) The Hong Kong Polytechnic University, School of Electrical and Electronic Engineering, 11 Kowloon Hung Hom Yuk Choi Road, 999077  

Hong Kong, China 

4) The Hong Kong Polytechnic University, The Department of Industrial and Systems Engineering, 11 Kowloon Hung Hom Yuk Choi Road, 

999077 Hong Kong, China ( yanjack.wang@polyu.edu.hk). 

Abstract 

The tire-road friction coefficient (TRFC) directly determines the available traction and braking forces of the tires, 

which in turn has a significant impact on vehicle stability control, particularly for commercial vehicles like heavy-

duty trucks. However, onboard sensors typically cannot directly measure the exact TRFC. To obtain accurate 

TRFC, estimation algorithms are used, which rely on data from onboard sensors combined with vehicle and tire 

models. Since the signals required for estimation come from various types of sensors, accurately obtaining the 

noise statistical characteristics of all sensors in practice is highly challenging. Additionally, due to the complex 

and variable nature of vehicle operating conditions, noise tends to be time-varying as a result of environmental 

factors, which inevitably affects the accuracy of the estimation. To address these problems, we propose a two-

stage adaptive identification framework that combines the extended H-infinity Kalman filter (EHKF) with the 

adaptive unscented Kalman filter (AUKF). First, in situations where the noise statistical characteristics are 

unknown, EHKF and the tire model are used to accurately estimate forces on the front and rear axles. Second, 

considering the time-varying nature of the noise, the AUKF, along with the vehicle model and axial force 

information, is employed to estimate the TRFC for the front and rear wheels. Finally, simulation tests on various 

road surfaces demonstrate that the two-stage adaptive identification method outperforms the unscented Kalman 

filter in terms of accuracy and stability. 

Keywords: Tire road friction coefficient estimation, adaptive identification framework, extended H-infinity 

Kalman filter, adaptive unscented Kalman filter. 

1. Introduction 

Rollover accidents have become a frequent road safety concern for commercial vehicles, 

particularly heavy trucks. Compared to passenger cars, the increased size and weight of heavy 

vehicles result in a higher risk of rollovers [1-3]. Many experts and scholars have researched 

rollover prevention, and the timing of the intervention of rollover control strategies is closely 

related to the tire-road friction coefficient (TRFC). In addition to avoiding accidents through 

rollover control, it is also possible to reduce the incidence of accidents by controlling steering 

and braking [4]. Such control systems are often called active collision avoidance systems [5]. 

A collision avoidance system generally includes motion prediction and path planning [6, 7]. 

Fully utilizing the TRFC when generating and tracking the path can enhance the system's 

performance. Furthermore, heavy trucks typically undertake long-distance freight 

transportation, which inevitably involves different road surfaces, such as asphalt, gravel, or icy 

roads. On different road surfaces, even the same heavily loaded vehicle has a varying stability 
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margin, making it necessary to identify the TRFC in real-time. In addition, changes in the 

driving environment, such as road surface conditions, weather, and traffic, can significantly 

affect measurement noise in vehicle dynamics. For instance, rough or uneven road surfaces 

introduce high-frequency vibrations, increasing noise in sensor readings like acceleration or 

wheel speed. Similarly, environmental factors like rain or snow can alter friction characteristics, 

leading to greater uncertainty and variability in measurements. 

Unfortunately, the TRFC cannot be directly measured using onboard sensors [8]. As a result, 

it must be estimated through indirect methods. The TRFC is typically estimated using two main 

approaches: experimental methods and model-based methods [9]. In experiments, optical 

sensors are attached to the vehicle to collect TRFC-related data, such as tire noise and carcass 

deformation. The TRFC is then estimated on the basis of the correlation between these 

measured parameters and the TRFC. Additionally, a position-sensitive detector was used to 

indirectly measure the real-time deformation of the tire carcass relative to the rim to estimate 

the TRFC [10]. Other types of sensors, such as piezoelectric sensors, estimated the TRFC by 

detecting tread deformation [11]. In addition, measuring the TRFC based on accelerometer data 

is also an effective method [12, 13]. However, these experimental approaches often require the 

installation of additional sensors which leads to high costs and limited practicality. Recently, 

computer vision has been used to estimate TRFC by analyzing road images with machine 

learning [14, 15]. Machine learning-based methods for identifying TRFC offer the advantage 

of adapting to complex, nonlinear relationships between vehicle dynamics and road conditions, 

improving prediction accuracy. These methods can also handle large datasets and identify 

patterns that traditional models may miss. However, their main drawback lies in the need for 

extensive training data and the risk of overfitting, which may limit their generalizability to 

unseen road conditions.  

Model-based methods typically use standard onboard sensors to acquire signals related to 

the TRFC and combine them with vehicle dynamics and tire models to estimate the TRFC. 

Specifically, these approaches can be classified into two main types: ones that rely on 

longitudinal dynamics and others that focus on lateral dynamics [16, 17]. Methods based on 

longitudinal dynamics primarily estimate the TRFC using the slip ratio. For example, Lee et al. 

[18] developed a traction estimator that integrates slip curves to estimate the TRFC. Cui et al. 

[19] identified the TRFC based on fitted curves that relate TRFC to slip ratios under five 

different road conditions. Additionally, Sharifzadeh et al. [20] employed recursive least squares 

to estimate the TRFC using slip signals. Zhao et al. [21] proposed a linear extended state 

observer to estimate the TRFC based on the braking dynamics model of a two-wheeled vehicle. 

To enhance estimation accuracy further, many researchers have utilized Kalman filters for 

TRFC estimation. The extended Kalman filter (EKF) has also been applied for TRFC 

identification [22]. Similar TRFC identification methods have also been documented in the 

literature [23, 24]. The use of Kalman filtering techniques allows researchers to continuously 

update their estimates as new data is collected. This real-time processing is particularly 

beneficial in dynamic driving situations where road conditions may change rapidly. The EKF 

further refines this process by accommodating non-linearities in the system, providing even 

more accurate TRFC estimates. 

During turning maneuvers, Hu et al. [25] designed an EKF on the basis of vehicle lateral 

dynamics to estimate the TRFC. To further enhance the identification performance of the 

TRFC, unscented Kalman filters (UKF) have also been employed [26]. For instance, Wang et 

al. [27] introduced a comprehensive estimation scheme based on UKF to predict the TRFC 

under conditions of mass mismatch. Additionally, an improved UKF was utilized to address the 

issue of TRFC estimation in scenarios where data loss occurs [28]. These filters use vehicle 

nonlinearities for reliable TRFC estimates, especially in cornering. The integration of UKF 
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allows for a more accurate identification of the TRFC by effectively handling uncertainties and 

variations in the input data. 

Recently, as deep learning algorithms have advanced, data-driven approaches have been 

increasingly used for TRFC estimation. McBride et al. [29] compared observer-based methods 

with neural network-based approaches and found that neural networks operated more quickly 

and directly while providing accuracy comparable to traditional methods. Xu et al. [30] further 

demonstrated that neural networks could successfully predict tire forces, highlighting the 

potential of neural network approaches in estimating tire-road interaction dynamics. 

Furthermore, Mirmohammad et al. [31] utilized four key features and developed a multilayer 

neural network to estimate the TRFC. Additionally, a spatial-temporal convolutional neural 

network was proposed to predict the TRFC with enhanced accuracy [32]. Although data-driven 

methods have been shown to effectively estimate the TRFC, significant challenges remain in 

terms of data collection and interpretability. 

From the above analysis, it is evident that model-based estimation methods remain the 

dominant approach in current research. These methods typically estimate the TRFC by first 

determining the tire forces. Estimating tire forces requires data from multiple sensors, such as 

wheel speed and steering angle signals, while TRFC estimation also relies on vehicle 

acceleration data. However, the noise characteristics of these sensors are often unknown or 

time-varying. Existing research rarely takes into account both the influence of unknown noise 

during tire force estimation and the impact of time-varying measurement noise on the accuracy 

of TRFC identification. To address these issues, an estimation scheme that integrates the 

extended H-infinity Kalman filter (EHKF) with the adaptive unscented Kalman filter (AUKF) 

has been proposed for TRFC identification. First, considering that the estimation of tire forces 

is influenced by unknown noise, the EHKF is employed to estimate the longitudinal and lateral 

forces of the tire. It should be noted that due to the use of the single-track model, we assume 

that the forces on the front axle and rear axle are respectively equal to the sum of the forces on 

the two front wheels and the two rear wheels. Furthermore, to address the time-varying 

characteristics of noise during vehicle operation, the AUKF is utilized to achieve real-time 

estimation of the TRFC with the vehicle model and tire force information. Finally, the two-

stage adaptive identification method is validated under various conditions using a co-simulation 

platform based on TruckSim and MATLAB/Simulink. Some contributions are listed as follows. 

1) A novel estimation method for tire forces is proposed, which integrates a tire model with 

the EHKF. This approach accounts for the influence of completely unknown noise 

characteristics, enabling precise and robust calculation of tire forces under varying 

operational conditions. 

2) A two-stage adaptive estimation scheme is developed to identify the TRFC. This 

framework simultaneously addresses noise uncertainties in all input signals associated with 

the tire and vehicle models, ensuring reliable performance even in the presence of dynamic 

and unpredictable environmental and system variations. 

The remainder of this paper is organized as follows: Section 2 presents the methodology, 

Section 3 details the simulation tests, and Section 4 provides the conclusions of this study. 

2. Methodology 

The framework of the two-stage adaptive TRFC estimation is shown in Fig. 1. Initially, the 

longitudinal and lateral tire forces, along with noise, are estimated using data from onboard 

sensors and a tire model, and these values are input into the EHKF for filtering to obtain more 

accurate tire forces. Because the vehicle model is a single-track model, the tire forces are 

aggregated and translated into forces acting on the front and rear axles. Then, using the vehicle 

model and AUKF, the TRFC of the front and rear wheels is obtained. The proposed two-stage 
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framework leverages the strengths of EHKF and AUKF to address different challenges in the 

estimation process. EHKF ensures robust force estimation under unknown noise conditions, 

while AUKF refines TRFC estimation by adapting to time-varying noise and system non-

linearities, creating a complementary and effective approach. 

 

 

Fig. 1. The two-stage estimation scheme. 

The estimation of the TRFC requires precise vehicle and tire models to be established. 

Taking into account the computational cost and model complexity, a single-track vehicle model 

is chosen to describe the vehicle's dynamic response. Furthermore, the tire forces are derived 

using the Dugoff tire model. 

2.1. The Vehicle Model 

A single-track vehicle model [33] is employed, as shown in Fig. 2. Air resistance and 

suspension system effects are ignored. The model assumes that the mechanical characteristics 

of the left and right tires are identical and can be linearly superimposed, represented by a single 

tire, thereby reducing the four-wheel vehicle model to a two-wheel model. Additionally, it 

assumes small steering angles, neglects the vehicle’s roll and pitch motions, and ignores 

aerodynamic forces such as drag and lift. Moreover, the vehicle's center of gravity is assumed 

to be positioned at the origin of the coordinate system. Unlike traditional passenger cars, which 

are typically front-wheel driven, heavy-duty vehicles are usually rear-wheel driven. 

 

Fig. 2. The single-track vehicle model. 
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 𝑎𝑥 =
(𝐹𝑥𝑓 𝑠𝑖𝑛 𝛿+𝐹𝑥𝑟)

𝑚
 (1) 

 𝑎𝑦 =
(𝐹𝑦𝑓 𝑐𝑜𝑠 𝛿+𝐹𝑦𝑟)

𝑚
 (2) 

 𝑟̇𝐼𝑧 = 𝐿𝑓(𝐹𝑥𝑓 𝑠𝑖𝑛 𝛿 + 𝐹𝑦𝑓 𝑐𝑜𝑠 𝛿) − 𝐿𝑟𝐹𝑦𝑟 (3) 

where 𝛽, 𝑣𝑥, 𝑣𝑦denote the sideslip angle, longitudinal vehicle velocity, and lateral vehicle 

velocity, 𝑎𝑥 and 𝑎𝑦 denote longitudinal acceleration and lateral acceleration, 𝐼𝑧 is the inertia 

moment about the vehicle vertical axis, the parameters 𝐿𝑓 and 𝐿𝑟 denote the distance from the 

center of gravity to the front axle and rear axle, 𝑚 is the vehicle mass, 𝛿 is the front wheel 

angle, 𝐹𝑥𝑓, 𝐹𝑦𝑓 are longitudinal and lateral forces of the front axle, 𝐹𝑥𝑟, 𝐹𝑦𝑟 are longitudinal and 

lateral forces of the rear axle, 𝑟 is the yaw rate. Here, we assume that the axial forces for both 

the front and rear axles are equal to the sum of the forces on the two front wheels and the two 

rear wheels, respectively. 

2.2. The Tire Model 

The relationship between tire motion and forces is defined by the Dugoff tire model [34]. 

The corresponding equations are presented below. 

 𝐹𝑥,𝑖 = 𝜇𝑖𝐹𝑥,𝑖
0 = 𝜇𝑖𝐹𝑧,𝑖𝐶𝑥,𝑖 (

𝑠𝑖

1+𝑠𝑖
) 𝑓(𝐿) (4) 

 𝐹𝑦,𝑖 = 𝜇𝑖𝐹𝑦,𝑖
0 = 𝜇𝑖𝐹𝑧,𝑖𝐶𝑦,𝑖 (

tan𝛼𝑖

1+𝑠𝑖
) 𝑓(𝐿) (5) 

 𝑓(𝐿) = {
𝐿(2− 𝐿), 𝐿 < 1
1,               𝐿 ≥ 1

 (6) 

 𝐿 =
1−𝑠𝑖

2√𝐶𝑥
2𝑠𝑖

2+𝐶𝑦
2(tan𝛼𝑖)

2
 (7) 

 𝐹𝑧,1 =
𝑚𝑔𝐿𝑟

2(𝐿𝑓+𝐿𝑟)
−

𝑚𝑎𝑥ℎ

2(𝐿𝑓+𝐿𝑟)
−
𝑚𝑎𝑦ℎ

𝑇𝑓
⋅

𝐿𝑟

𝐿𝑓+𝐿𝑟
 (8) 

 𝐹𝑧,2 =
𝑚𝑔𝐿𝑟

2(𝐿𝑓+𝐿𝑟)
−

𝑚𝑎𝑥ℎ

2(𝐿𝑓+𝐿𝑟)
+
𝑚𝑎𝑦ℎ

𝑇𝑓
⋅

𝐿𝑟

𝐿𝑓+𝐿𝑟
 (9) 

 𝐹𝑧,3 =
𝑚𝑔𝐿𝑓

2(𝐿𝑓+𝐿𝑟)
+

𝑚𝑎𝑥ℎ

2(𝐿𝑓+𝐿𝑟)
−
𝑚𝑎𝑦ℎ

𝑇𝑟
⋅

𝐿𝑓

𝐿𝑓+𝐿𝑟
 (10) 

 𝐹𝑧,4 =
𝑚𝑔𝐿𝑓

2(𝐿𝑓+𝐿𝑟)
+

𝑚𝑎𝑥ℎ

2(𝐿𝑓+𝐿𝑟)
+
𝑚𝑎𝑦ℎ

𝑇𝑟
⋅

𝐿𝑓

𝐿𝑓+𝐿𝑟
 (11) 

 𝑠𝑖 = sgn( 𝑣𝑥 − 𝑅𝜔𝑖)
|𝑣𝑥−𝑅𝜔𝑖|

max(𝑅𝜔𝑖,𝑣𝑥)
 (12) 

 𝛼1 = 𝛿 − arctan(
𝑣𝑦+𝐿𝑓𝑟

𝑣𝑥−
𝑇𝑓𝑟

2

) (13) 

 𝛼2 = 𝛿 − arctan(
𝑣𝑦+𝐿𝑓𝑟

𝑣𝑥+
𝑇𝑓𝑟

2

) (14) 

 𝛼3 = − arctan(
𝑣𝑦−𝐿𝑟𝑟

𝑣𝑥−
𝑇𝑟𝑟

2

) (15) 

 𝛼4 = − arctan(
𝑣𝑦−𝐿𝑟𝑟

𝑣𝑥+
𝑇𝑟𝑟

2

) (16) 
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Where 𝜇 is TRFC, ℎ represents the height of the center of gravity, 𝑠𝑖, 𝛼𝑖 denote the 

longitudinal slip ratio, wheel sideslip angle, 𝐶𝑥,𝑖, 𝐶𝑦,𝑖, 𝐹𝑧,𝑖 represent longitudinal and lateral 

stiffness coefficients of tires, along with vertical tire forces, 𝐹𝑥,𝑖
0 , 𝐹𝑦,𝑖

0  are the normalized 

longitudinal and lateral forces, 𝑖 = 1, 2, 3, 4, which correspond to the left-front, right-front, left-

rear, and right-rear wheels, respectively, 𝜔𝑖 is the wheel rotational speed, 𝑅𝑖 is the wheel radius, 

𝑇𝑓 and 𝑇𝑟 represent front track width and rear track width. 

2.3. The EHKF 

Unlike the traditional EKF, the EHKF eliminates the need for prior assumptions about noise 

characteristics. By minimizing the maximum estimation error, the HEKF offers greater 

robustness compared to the EKF. The nonlinear system model is described as follows.  

 {
𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) + 𝑤𝑘
𝑧𝑘+1 = ℎ(𝑥𝑘+1, 𝑢𝑘+1) + 𝑣𝑘+1

  (17) 

𝑥 = [𝐹𝑥,𝑖
0 , 𝐹𝑦,𝑖

0 ]𝑇 , 𝑖 = 1, 2, 3, 4 

Where 𝑓(⋅) denotes state transition function, 𝑤 process noise, and 𝑣 measurement noise, 𝑧 is 

the measurement vector, ℎ(⋅) denotes measurement transition function, 𝑢 is the input vector, 

𝑥 represents the state vector. While 𝑓(⋅) and ℎ(⋅) are not directly applied in the EKF update 

step, their Jacobian forms are utilized as the transition and observation matrices, respectively. 

 𝐹𝑘 =
∂𝑓

∂𝑥
|
𝑥̂𝑘−1|𝑘 − 1

 (18) 

 𝐻𝑘 =
∂ℎ

∂𝑥
|
𝑥̂𝑘|𝑘 − 1

 (19) 

The EHKF not only limits the upper limit of the estimation error but also minimizes this 

upper limit. Thus, the cost function is defined as follows. 

 𝐽 =
∑ ‖𝑥𝑘−𝑥̂𝑘‖

2𝑁
𝑘=1

‖𝑥0−𝑥̂0‖𝑃0
−1

2 +∑ (‖𝑤𝑘‖
𝑄𝑘

−1
2 +‖𝑣𝑘‖

𝑅𝑘
−1

2 )𝑁
𝑘=1

 (20) 

Where 𝑥0 is the initial state vector 𝑥𝑘, 𝑄𝑘 is the covariance matrix of the process noise, 𝑅𝑘 is 

the covariance matrix of the measurement noise, and 𝑃0 is the initial value of the state 

covariance matrix 𝑃𝑘. 

The objective of establishing this loss function is to find an appropriate 𝑥𝑘 that minimizes 𝐽. 
However, in real-world applications, finding the optimal solution is difficult, and suboptimal 

solutions are commonly used. Thus, the cost function takes the following form. 

 Sup{𝐱0, 𝐯𝑘, 𝐰𝑘} =
∑ ‖𝑥𝑘−𝑥̂𝑘‖

2𝑁
𝑘=1

‖𝑥0−𝑥̂0‖𝑃0
−1

2 +∑ (‖𝑤𝑘‖
𝑄𝑘

−1
2 +‖𝑣𝑘‖

𝑅𝑘
−1

2 )𝑁
𝑘=1

≤ 𝛾2 (21) 

where 𝛾 > 0 and 𝛾2 denote the thresholds that limit the upper limit of the energy of the cost 

function. The smaller the value of 𝛾, the more robust the estimator becomes. Thus, the overall 

iterative process of constructing the EHKF is as follows. 

Time Update: 

The prior state prediction 

 𝑥𝑘|𝑘−1 = 𝐹𝑘𝑥𝑘−1|𝑘−1 (22) 

The error covariance prediction 
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 𝑃𝑘|𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘−1  (23) 

Measurement Update 

 𝑆̄𝑘 = 𝐿𝑘
𝑇 𝑆̄𝑘𝐿𝑘 (24) 

 𝑀𝑘 = 𝐼 − 𝛾𝑆̄𝑘𝑃𝑘|𝑘−1 + 𝐻𝑘
𝑇𝑅𝑘

−1𝐻𝑘𝑃𝑘|𝑘−1 (25) 

Compute Kalman Gain 

 𝐾𝑘 = 𝑃𝑘|𝑘𝑀𝑘𝐻𝑘
𝑇𝑅𝑘

−1 (26) 

Update the posterior state:  

 𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘𝑥𝑘|𝑘−1) (27) 

Update the error Covariance 

 𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1𝑀𝑘 (28) 

Where 𝑆𝑘 is the state weightage matrix and 𝐿𝑘 is the identify matrix. 

Further, the existence of EHKF needs to satisfy the following equation [35]. 

 𝑃𝑘|𝑘
−1 + 𝐻𝑘

𝑇𝑅𝑘
−1𝐻𝑘 − 𝛾

−2𝐿𝑘
𝑇𝐿𝑘 > 0 (29) 

For the filtering of tire forces, at this point, the Jacobi matrices 𝐹𝑘 and 𝐻𝑘 are both unit 

matrices and the matrix dimension is 8. 

2.4. The AUKF 

The TRFC can be treated as constant during brief time intervals. By leveraging the 

relationships between 𝐹𝑥,𝑖
0 , 𝐹𝑥,𝑖, 𝐹𝑦,𝑖

0  and 𝐹𝑦,𝑖 as defined in Eqs (4-5), the discrete mathematical 

model can be obtained through equations (1-3) 

 {
𝑥𝑘+1
𝑇𝑅𝐹𝐶 = 𝑓(𝑥𝑘

𝑇𝑅𝐹𝐶 , 𝑢𝑘) + 𝑤𝑘
𝑇𝑅𝐹𝐶

𝑧𝑘+1
𝑇𝑅𝐹𝐶 = ℎ(𝑥𝑘+1

𝑇𝑅𝐹𝐶 , 𝑢𝑘+1) + 𝑣𝑘+1
𝑇𝑅𝐹𝐶 (30) 

 𝑥𝑇𝑅𝐹𝐶 = [𝜇1, 𝜇2, 𝜇3, 𝜇4]
𝑇, 𝑥𝜏+1

𝑇𝑅𝐹𝐶 = [𝑎𝑥, 𝑎𝑦, 𝑟̇]
𝑇 (31) 

We use the AUKF to estimate the average TRFC 𝜇𝑓 = 0.5(𝜇1 + 𝜇2) for the front-wheel and 

the average TRFC 𝜇𝑟 = 0.5(𝜇3 + 𝜇4) for the rear-wheel. The detailed iterative steps are 

outlined as follows. 

1) Initialization: 

The initial mean of 𝑥𝑇𝑅𝐹𝐶and its covariance matrix (CM) 𝑃𝑇𝑅𝐹𝐶 

 𝑥̂0
𝑇𝑅𝐹𝐶 = 𝐸(𝑥0

𝑇𝑅𝐹𝐶) (32) 

 𝑃0
𝑇𝑅𝐹𝐶 = 𝐸[(𝑥0

𝑇𝑅𝐹𝐶 − 𝑥̂0
𝑇𝑅𝐹𝐶)(𝑥0

𝑇𝑅𝐹𝐶 − 𝑥̂0
𝑇𝑅𝐹𝐶)𝑇] (33) 

2) Time steps: 

The sigma sampling points (SSP) 𝜆𝑘−1
𝑖  and weight 𝜙𝑐

𝑖 , 𝜙𝑚
𝑖  are given by 
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{
 
 

 
 
𝜆k-1
0 = 𝑥̂𝑘−1

𝑇𝑅𝐹𝐶

𝜆k-1
𝑖 = 𝑥̂𝑘−1

𝑇𝑅𝐹𝐶 + √𝑛 + 𝜆 (√𝑃𝑘−1
𝑇𝑅𝐹𝐶)

𝑖

, 𝑖 = 1,2,⋯ 𝑛

𝜆k-1
𝑖 = 𝑥̂𝑘−1

𝑇𝑅𝐹𝐶 − √𝑛 + 𝜆 (√𝑃𝑘−1
𝑇𝑅𝐹𝐶)

𝑖

, 𝑖 = 𝑛 + 1, ⋯ 2𝑛

 (34) 

 {
𝜙𝑚

0 = 𝜆/(𝑛 + 𝜆),𝜙𝑐
0 = 𝜆/(𝑛 + 𝜆) + 1+ 𝛽 − 𝛼2

𝜙𝑚
𝑖 = 𝜙𝑐

𝑖 = 𝜆/(2(𝑛 + 𝜆)), 𝑖 = 1,2,⋯ 2𝑛
 (35) 

{   
𝜙𝑚

0 = 𝜆/(𝑛 + 𝜆),𝜙𝑐
0 = 𝜆/(𝑛 + 𝜆) + 1+ 𝛽 − 𝛼2

𝜙𝑚
𝑖 = 𝜙𝑐

𝑖 = 𝜆/(2(𝑛 + 𝜆)), 𝑖 = 1,2,⋯ 2𝑛
 

where 𝑛 is the dimension of 𝑥, 𝜆, 𝛽, and 𝛼 can be seen in [36]. 

The propagated SSP are updated by 

 𝜆𝑘/𝑘−1
∗(𝑖) = 𝑓(𝜆k-1

(𝑖) , 𝑢𝑘−1) (36) 

The prior state 𝑥̂𝑘
𝑘
−1

𝑇𝑅𝐹𝐶 and corresponding state CM 𝑃𝑘
𝑘
−1

𝑇𝑅𝐹𝐶 are calculated utilizing (37) and 

(38), respectively. 

 𝑥̂𝑘/𝑘−1
𝑇𝑅𝐹𝐶 = ∑ 𝜙𝑚

𝑖 𝜆𝑘/𝑘−1
∗(𝑖)2𝑛

𝑖=0  (37) 

 𝑃𝑘/𝑘−1
𝑇𝑅𝐹𝐶 = ∑ 𝜙𝑐

𝑖(𝜆𝑘/𝑘−1
∗(𝑖) − 𝑥̂𝑘/𝑘−1

𝑇𝑅𝐹𝐶 )(𝜆𝑘/𝑘−1
∗(𝑖) − 𝑥̂𝑘/𝑘−1

𝑇𝑅𝐹𝐶 )
𝑇

2𝑛
𝑖=0 +𝑄𝑘−1

𝑇𝑅𝐹𝐶 (38) 

where 𝑄𝑘−1
𝑇𝑅𝐹𝐶 is the CM of the process noise. 

3) Measurement steps: 

The new SSP 𝜆𝑘
𝑖 are as follows  

 

{
 
 

 
 
𝜆𝑘
0 = 𝑥̂𝑘/𝑘−1

𝑇𝑅𝐹𝐶

𝜆𝑘
𝑖 = 𝑥̂𝑘/𝑘−1

𝑇𝑅𝐹𝐶 + √𝑛 + 𝜆 (√𝑃𝑘/𝑘−1
𝑇𝑅𝐹𝐶 )

𝑖

, 𝑖 = 1, 2, ⋯𝑛

𝜆𝑘
𝑖 = 𝑥̂𝑘/𝑘−1

𝑇𝑅𝐹𝐶 − √𝑛 + 𝜆 (√𝑃𝑘/𝑘−1
𝑇𝑅𝐹𝐶 )

𝑖

, 𝑖 = 𝑛 + 1, ⋯ 2𝑛

 (39) 

The propagated SSP are updated by 

 𝑧𝑘/𝑘−1
∗(𝑖) = ℎ(𝜆𝑘

(𝑖), 𝑢𝑘) (40) 

The estimated output 𝑧̂𝑘/𝑘−1 and its CM𝑃𝑧,𝑘 are calculated using (41) and (42), respectively. 

 𝑧̂𝑘/𝑘−1
𝑇𝑅𝐹𝐶 = ∑ 𝜙𝑚

𝑖 𝑧𝑘/𝑘−1
∗(𝑖)2𝑛

𝑖=0  (41) 

 𝑃𝑧,𝑘
𝑇𝑅𝐹𝐶 = ∑ 𝜙𝑐

𝑖(𝑧𝑘/𝑘−1
∗(𝑖) − 𝑧̂𝑘/𝑘−1

𝑇𝑅𝐹𝐶 ) (𝑧𝑘
𝑘
−1

∗(𝑖)
− 𝑧̂𝑘/𝑘−1

𝑇𝑅𝐹𝐶 )

𝑇

2𝑛
𝑖=0 + 𝑅𝑘

𝑇𝑅𝐹𝐶 (42) 

where 𝑅𝑘
𝑇𝑅𝐹𝐶is the CM of the measurement noise. 

The CM 𝑃𝑥𝑧,𝑘
𝑇𝑅𝐹𝐶is given by 

 𝑃𝑥𝑧,𝑘
𝑇𝑅𝐹𝐶 = ∑ 𝜙𝑐

𝑖(𝑧𝑘/𝑘−1
∗(𝑖) − 𝑥̂𝑘/𝑘−1

𝑇𝑅𝐹𝐶 )(𝑧𝑘/𝑘−1
∗(𝑖) − 𝑥̂𝑘/𝑘−1

𝑇𝑅𝐹𝐶 )
𝑇

2𝑛
𝑖=0  (43) 
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The gain matrix 𝐾𝑘
𝑇𝑅𝐹𝐶can be calculated using (44) and the posterior state 𝑥̂𝑘

𝑇𝑅𝐹𝐶 and its CM 

𝑃𝑘
𝑇𝑅𝐹𝐶 are updated using (45) and (46). 

 𝐾𝑘
𝑇𝑅𝐹𝐶 = 𝑃𝑥𝑧,𝑘

𝑇𝑅𝐹𝐶(𝑃𝑧,𝑘
𝑇𝑅𝐹𝐶)

−1
 (44) 

 𝑥̂𝑘
𝑇𝑅𝐹𝐶  =x̂𝑘

𝑇𝑅𝐹𝐶
𝑘/𝑘−1

+ 𝐾𝑘
𝑇𝑅𝐹𝐶(𝑧𝑘

𝑇𝑅𝐹𝐶 − 𝑧̂𝑘/𝑘−1
𝑇𝑅𝐹𝐶 ) (45) 

 𝑃𝑘
𝑇𝑅𝐹𝐶 = 𝑃𝑘/𝑘−1

𝑇𝑅𝐹𝐶 − 𝐾𝑘
𝑇𝑅𝐹𝐶𝑃𝑧,𝑘

𝑇𝑅𝐹𝐶(𝐾𝑘
𝑇𝑅𝐹𝐶)𝑇 (46) 

The above iterative process of UKF presumes that the 𝑅𝑘
𝑇𝑅𝐹𝐶 is known, and in order to adapt 

to the variable driving conditions, the dynamic update of 𝑅𝑘
𝑇𝑅𝐹𝐶 is performed as follows. 

 𝜀𝑘 = 𝑧𝑘
𝑇𝑅𝐹𝐶 − 𝑧̂𝑘/𝑘−1

𝑇𝑅𝐹𝐶  (47) 

 𝐶̂𝑘 =
∑ 𝜀𝑖𝜀𝑖

𝑇𝑘
𝑖=𝑘−𝐿+1

𝐿
 (48) 

 𝑅̂𝑘
𝑇𝑅𝐹𝐶 = 𝐶̂𝑘 + ∑ [𝜙𝑐

𝑖(𝑧𝑘/𝑘−1
∗(𝑖) − 𝑧̂𝑘/𝑘−1

𝑇𝑅𝐹𝐶 + 𝐶̂𝑘) (𝑧𝑘
𝑘
−1

∗(𝑖)
− 𝑧̂𝑘/𝑘−1

𝑇𝑅𝐹𝐶 + 𝐶̂𝑘)

𝑇

]2𝑛+1
𝑖=0  (49) 

3. Simulation 

We developed an advanced integrated simulation platform using TRUCKSIM and 

SIMULINK (see Fig. 3). TRUCKSIM is a sophisticated simulation software designed for 

modeling the dynamic behavior of commercial vehicles, including trucks, buses, and trailers. It 

provides a highly accurate representation of vehicle handling, suspension systems, and tire 

characteristics, making it an invaluable tool for engineers. The software allows for the 

simulation of various driving scenarios, including road types, load conditions, and driver inputs, 

to analyze vehicle performance. One of its key advantages is the ability to test vehicle designs 

virtually, reducing the need for costly physical prototypes and real-world testing. TRUCKSIM 

provides a high-fidelity vehicle model that captures detailed dynamics, including suspension, 

tire, and steering system characteristics. The model incorporates key parameters such as vehicle 

mass, inertia, and braking system performance. The vehicle model parameters used in the 

experiment are shown in Table 1. This high level of accuracy allows for realistic simulations of 

vehicle behavior in various driving conditions and scenarios. As a result, the tire forces and 

TRFC generated in TRUCKSIM can be used as reference values (RV). The EHKF and AUKF 

are implemented in SIMULINK. To validate the proposed approach, random Gaussian noise 

was added to the sensor signals, and tests were conducted on asphalt as well as ice road surfaces. 

It should be noted that since a single-track model is selected, the forces shown in the result 

figures are those of the front and rear axles, not the individual tire forces, for the sake of 

consistency in validation. Additionally, the TRFC represents the average TRFC of the front and 

rear wheels, rather than the TRFC of a single tire. 
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Fig. 3. The integrated simulation platform. 

 

Table 1. Truck model parameters. 

Symbol Value Symbol Value 

𝑚 6900 kg 𝑇𝑓 1.975 m 

𝐼𝑧 5757 kg ∙m2 𝑇𝑟 1.975 m 

𝐿𝑓 1.4 m ℎ 0.975 m 

𝐿𝑟 2.5 m g 9.8 m/s2 

3.1. Tests on asphalt roads 

A steering maneuver involving acceleration on asphalt roads is performed, with the TRFC 

set at 0.85. The parameters chosen for tire force estimation in the EHKF method are as follows: 

the measurement noise is 𝑅 = diag[10,10,10,10,1,1,1, ], and the process noise is 

𝑄 = diag[1,1,1,1,1,1,1,1] ∙ 0.01. The front wheel angle and vehicle velocity are shown in Fig. 4a 

and Fig. 4b. From these two figures, we can see that the vehicle's initial speed is 20 km/h, after 

which it accelerates to nearly 70 km/h by the end of the simulation. Meanwhile, the vehicle 

performs lane change maneuvers during this time. 

 
a) b) 

  

Fig. 4. The vehicle state: a) the front wheel angle on asphalt roads, b) the vehicle speed on asphalt roads. 
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Figures 5a and 5b illustrate the estimated curves of longitudinal forces for the front and rear 

axles. Figures 5c and 5d show the estimated lateral forces for the front and rear axles. The red 

solid line represents the RV, while the green dashed line shows the axial forces calculated 

directly from the Dugoff model and the noisy sensor signals. The blue solid line represents the 

axial forces after filtering with the EHKF. We can observe that direct calculations using the tire 

model result in significant fluctuations and deviations from the RV due to severe noise 

interference. Since the noise is set randomly, applying the EHKF clearly shows that the filtered 

forces for both the front and rear axles are much closer to the RV with reduced fluctuations. 

Table 2 displays the root mean square error (RMSE) for both methods. It is evident that the 

RMSE for EHKF is lower than that of the direct calculation based on the tire model. This is 

because the EHKF can minimize the maximum error even when the statistical characteristics 

of the noise are unknown. 

 
a) b) 

  
c) d) 

  

Fig. 5. The forces of front and rear axles: a) the longitudinal force of the front axle on asphalt roads, 

b) the longitudinal force of rear axle on asphalt roads, c) the lateral force of the front axle on asphalt roads, 

d) the lateral force of rear axle on asphalt roads. 

 

Table 2. RMSE of Different Methods on Asphalt Roads. 

Symbol Dugoff model EHKF 

𝐹𝑥𝑓 29.61 18.41 

𝐹𝑥𝑟 388.52 338.70 

𝐹𝑦𝑓 800.92 602.76 

𝐹𝑦𝑟 1080.20 306.06 

 

Figures 6a and 6b illustrate the TRFC estimation curves for the front and rear wheels, 

respectively. The red solid line represents the RV, the green solid line shows the values 

estimated using the UKF algorithm, and the blue solid line shows the values estimated using 
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the AUKF algorithm. As seen in the two figures, the actual TRFC is 0.85. In Fig. 6a, the TRFC 

estimation curve of the front wheel only begins to rapidly approach the RV around 1.63 

seconds. This is because the heavy-duty vehicle is rear-wheel drive, and even though the vehicle 

is accelerating, the excitation on the front axle is still minimal. The rapid convergence toward 

the RV after 1.63 seconds occurs because steering excitation starts to increase significantly at 

that point. Since the noise is randomly assigned, the AUKF can dynamically adjust the noise 

covariance matrix 𝑅 allowing it to better track the RV, while the UKF estimation curve 

fluctuates more and does not converge to the true value. In Fig. 6b, since the vehicle begins 

accelerating right away and the rear axle is the driving axle, the estimation curves from both 

algorithms quickly approach the RV at the start of the simulation. However, due to the lack of 

noise adaptability in the UKF, its estimation accuracy is lower than that of the AUKF. 

 
a) b) 

  

Fig. 6. The TRFC: a) of the front wheel on asphalt roads, b) of the rear wheel on asphalt roads. 

3.2. Test on ice roads 

On icy and snowy roads, high speeds can easily lead to instability, so the vehicle speed is set 

to 30 km/h, and the vehicle performs a non-standard lane change maneuver. Figures 7a and 7b 

depict the changes in the front wheel steering angle and vehicle speed, respectively. The front 

wheel steering angle is more irregular compared to the experiment on asphalt roads, while the 

vehicle speed remains relatively stable at 30 km/h for constant-speed driving. The parameters 

for the EHKF are as follows: 𝑄 = diag[1,1,1,1,1,1,1,1] ∙ 0.01, 𝑅 = diag[10,10,10,10,1,1,1, ]. 
 

a) b) 

  

Fig. 7. The vehicle state: a) the front wheel angle on ice roads, b) the vehicle speed on ice roads. 

In Fig. 8a and Fig. 8b, the estimated longitudinal forces for both the front and rear axles are 

displayed. In Fig. 8c and Fig. 8d, the estimated lateral forces for the front and rear axles are 

shown. The influence of random noise, which was introduced into the system, is clearly visible 

in these graphs. The forces, when directly calculated using the tire model, exhibit considerable 
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variations and significant deviations from the RV. These discrepancies primarily arise due to 

the tire model’s susceptibility to noise interference, making it challenging to obtain reliable 

estimations under noisy conditions. When the EHKF is applied, a marked improvement in 

estimation precision can be observed. The filtered force estimates on both the front and rear 

axles align much more closely with the RV, showing significantly fewer fluctuations. This 

demonstrates the robustness of the EHKF, which proves more effective at handling noise 

compared to direct calculations based on the tire model. The EHKF is particularly adept at 

managing uncertainties, even when the statistical properties of the noise remain unknown. Its 

capability to minimize the maximum estimation error is crucial for achieving this enhanced 

performance. A comparison of RMSE for both methods is presented in Table 3. It is evident 

that the RMSE for the EHKF is notably lower than for the direct method using the tire model. 

The ability of the EHKF to adapt to random noise and produce more accurate estimations, even 

under uncertain and dynamic conditions, underscores its superiority. 

 
a) b) 

  
c) d) 

  

Fig. 8. The forces of front and rear axles: a) the longitudinal force of the front axle on ice roads, 

b) the longitudinal force of rear axle on ice roads, c) the lateral force of the front axle on ice roads, d) the lateral 

force of rear axle on ice roads. 

 

Table 3. RMSE of Different Methods on Ice Roads. 

Symbol Dugoff model EHKF 

𝐹𝑥𝑓 88.90 45.58 

𝐹𝑥𝑟 318.80 171.54 

𝐹𝑦𝑓 2797.50 2420.70 

𝐹𝑦𝑟 1745.30 845.08 

 

The TRFC estimation curves for the front and rear wheels are illustrated in Fig. 9a and 

Fig. 9b, respectively. Similar to the first experimental scenario, the TRFC of the front wheels 
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only rapidly approaches the RV after more than 5 seconds, while the TRFC of the rear wheels 

quickly converges to the RV from the start. The reason for this behavior is the same as in the 

asphalt road experiment. Likewise, from both figures, we can see that the AUKF curves 

eventually converge to the RV, whereas the UKF, lacking the ability to dynamically adapt to 

measurement noise, exhibits greater fluctuations and fails to track the RV. Through the two 

experiments mentioned above, we can observe that the proposed estimation scheme 

demonstrates adaptability to different noise interferences and is capable of identifying the 

TRFC across various road surfaces. 

 
a) b) 

  

Fig. 9. The TRFC: a) of the front wheel on ice roads, b) of the rear wheel on ice roads. 

4. Conclusion 

In this work, a two-stage adaptive identification framework is proposed that combines EHKF 

and AUKF, enabling accurate TRFC estimation under unknown and time-varying measurement 

noise conditions. Initially, in cases where the statistical characteristics of noise are unknown, 

the EHKF combined with the tire model provides precise force estimations for both the front 

and rear axles. Subsequently, considering the time-varying nature of noise, the AUKF, together 

with the vehicle model and axial force data, is utilized to estimate the TRFC for the front and 

rear wheels. Simulation tests conducted on various road surfaces demonstrate that the two-stage 

adaptive identification scheme outperforms the unscented Kalman filter in terms of both 

accuracy and stability.  

Since it is assumed that the model parameters are constant and known in advance during the 

estimation process, there is an opportunity to further improve the robustness and flexibility of 

the proposed framework. In the future, we aim to integrate parameter identification methods 

into the estimation framework to address potential variations in model parameters. This 

integration will allow the system to adapt more effectively to dynamic conditions, thereby 

enhancing the algorithm's overall performance and making it more applicable to real-world 

scenarios where exact parameter knowledge may not always be available. Furthermore, while 

some experimental sites and equipment are currently unavailable, plans are in place to conduct 

real-vehicle experiments as soon as the required resources are accessible. These real-world tests 

will be essential to validate the practicality and robustness of the proposed algorithm under 

actual operating conditions, ensuring its applicability in diverse vehicle environments and road 

conditions. 
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