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Abstract 

To address the disordered inspection paths and long inspection time encountered when coordinate measuring 

machines (CMMs) inspect free-form surface parts, an improved ant colony algorithm was proposed to optimize 

the inspection path and thereby improve inspection efficiency. To enhance the optimization performance of the 

ant colony algorithm and overcome its shortcomings, such as low search speed and susceptibility to local optimal 

solutions, this work improves the initial pheromone distribution, pheromone evaporation factor, and pheromone 

update strategy and introduces a local search strategy. The experimental results revealed that the improved ant 

colony algorithm had strong search directionality in the early stages of iteration, higher search speed, and an 

enhanced ability to escape from local optimal solutions; the inspection paths of the free-form surface optimized 

by the improved ant colony algorithm were neat and aesthetically pleasing, and the inspection efficiency increased 

by up to 14.75%, 23.59%, and 34.21% compared with those of the classic ant colony algorithm, artificial bee 

colony algorithm, and genetic algorithm, respectively. 
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1. Introduction 

Free-form surfaces find extensive application across multiple sectors, including but not 

limited to aeronautics, tooling, automotive, and medical industries, owing to their varied 

configurations and other contributing aspects [1]. Coordinate measuring machines (CMMs) are 

commonly used for inspecting the size and shape accuracy of free-form surface parts to 

determine whether they meet the expected requirements because of their high inspection 

accuracy and simple operation. When CMMs are used to inspect free-form surfaces, the number 

of measurement points (MPs), the arrangement strategy of the MPs, and the quality of the 

inspection path (IP) plan are important factors that determine the inspection efficiency. 

Consequently, it is essential to devise an optimal IP for the MPs prior to conducting the 

inspection. The number and distribution of MPs determine the effectiveness of the inspection 

(that is, whether the inspection results can reflect the form error of free-form surfaces). The 

optimization of the IP does not affect the effectiveness of the inspection. The purpose of 

optimizing the IP is to further improve the inspection efficiency. Therefore, this paper does not 

use the inspection results (the form error of free-form surfaces) as an indicator to evaluate the 

performance of the proposed algorithm. Instead, the experiments are conducted under the 

hypothetical condition of using 100, 200, and 300 randomly distributed MPs. 

In order to effectively improve the inspection efficiency of CMMs, many scholars have 

conducted in-depth research on the number and layout of MPs. Kamrani et al. [2] determined 

the number and position of MPs for prismatic parts and some axially symmetric parts through 

methods such as feature recognition and accessibility analysis. Abdulhameed et al. [3] based 

on node vectors, divided surfaces into regions of different complexities and recursively 
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determined the number and distribution of MPs in each region according to curvature, 

effectively reducing the number of MPs to improve inspection efficiency. He et al. [4] proposed 

an adaptive sampling strategy based on a machining error model, which improved both 

inspection efficiency and accuracy. 

At the same time, a large number of scholars have improved the inspection efficiency of 

CMM for free-form surfaces through path optimization. For example, Virgil et al. [5] used an 

optimization algorithm based on matrix relaxation and the nearest neighbour method to 

optimize the IP of car bodies, which significantly improved inspection efficiency. Li and 

colleagues [6] introduced an enhanced search algorithm that leverages the concepts of adjacent 

feature mapping and convex hulls, which performed well in IP planning for structural aerospace 

parts and effectively avoided collisions. Liu et al. [7] used a local path generation method based 

on the probe trajectory and its rotation to quantify the inspection time (IT) in the IT matrix, this 

led to a substantial enhancement in the inspection process of free-form surface components and 

substantially diminished the count of virtual points required. And a hybrid path optimization 

algorithm based on ant colony optimization (ACO) and genetic algorithm (GA) was proposed 

by Tsagaris, which reduced the IT by 50% compared with the GA [8]. Yi et al. [9] introduced 

an all-inclusive strategy for optimizing the IPs of free-form surfaces, which employs 

a specialized algorithm to expedite the computation of the probe's reachability cone using 

graphical processing capabilities. This method effectively reduced the number of rotations of 

the probe head by grouping the MPs that use the same inspection posture and inspecting them 

in order, thereby shortening the IT. Li et al. [10] divided the MPs into different regional groups 

on the basis of the orientation relationship of the points to be measured and optimized the IP of 

the points within the group via the Lin–Kernighan algorithm, whereas the path between the 

groups was globally optimized via the greedy algorithm. Although the optimized IP was 

significantly shortened, the probability of this algorithm getting into a local optimal solution 

was relatively high. 

Abdulhameed et al. [11] combined artificial neural networks with GAs and applied them to 

the optimization of IPs for free-form surfaces, which shortened the IP by approximately half 

and greatly improved the inspection efficiency. Han et al. [12] applied the ACO for local path 

optimization and optimized multitarget inspection through a path reoptimization algorithm, 

which significantly improved the CMM inspection efficiency and achieved an intelligent 

inspection process. Stojadinovic et al. [13] optimized the IP of prismatic workpieces via the 

ACO and proposed an inspection model for prismatic parts via a CMM, which effectively 

improved the inspection efficiency; however, the model was limited to prismatic parts and had 

a large limitation. Zhao and colleagues [14] utilized the ACO to refine the IP for substantial 

surface components, demonstrating a reduction in IP length and an increase in inspection 

efficiency when contrasted with the conventional zigzag algorithm. Zakharov et al. [15] used 

the ACO to optimize the trajectory length of the probe to minimize it and to effectively reduce 

the time cost when the CMM inspects parts and compared it with the branch and bound 

algorithm in experiments. The experiments revealed that the solution optimized by the ACO 

was closer to the optimal solution, and the optimization process took less time, indicating that 

the inspection efficiency of the CMM was effectively improved. He and team [16] harnessed 

the Kuhn–Munkres algorithm to refine the IP for enhanced CMM safety and efficiency. They 

introduced an automatic collision inspection algorithm, adept at preventing probe-to-part 

collisions during the inspection. Zhao et al. [17] proposed a high-efficiency comprehensive IP 

optimization method through the exploration of the random tree algorithm and GA for 

multinode search, which included the calculation algorithm for the inspection direction cone 

and probe reachability cone, classified the MPs to be measured, and finally applied the method 

to the five-axis coordinate-measuring machine, which effectively improved the inspection 

efficiency. Han et al. [18] used the ACO for local and global IP optimization and proposed 
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a spherical model for collision inspection and avoidance in the inspection process. Empirical 

results demonstrated that the approach significantly enhanced both the efficiency and safety of 

the measurement process using the machine. Lin et al. [19] proposed a workpiece inspection 

system based on 3D graphic scanning recognition of MP coordinates, in which the adaptive 

group-based differential evolution (AGDE) algorithm proposed for optimization of the IP 

integrated the concept of grouping and determined the search method in the algorithm search 

iteration process by referring to the optimal solution for each group, thereby effectively 

improving the local search ability and overall search efficiency. The experiments revealed that 

the above method could obtain the shortest collision-free IP, ensuring a high-efficiency 

inspection process under safe inspection conditions. 

The path planning problem of free-form surface MPs is actually also a combinatorial 

optimization problem. In the realm of combinatorial optimization challenges, the well-known 

travelling salesman problem (TSP) serves as a quintessential instance, with numerous experts 

and academics having delved into its intricacies. After years of research on combinatorial 

optimization problems, intelligent algorithms, such as GAs [20, 21], ACOs [22-26], simulated 

annealing algorithms [27, 28], artificial bee colony algorithms (ABC) [29, 30], cuckoo search 

algorithms [31], and bat algorithms [32], have become the mainstream methods for solving this 

type of problem. Among the many intelligent search algorithms, the ACO is widely used 

because of its high search accuracy, simple structure, and good performance in solving 

combinatorial optimization problems. This work also improves the ACO and applies it to the 

path planning of free-form surface inspection. 

To address the issues of slow search speeds and a propensity for local optima in the ACO, 

this research introduces several modifications. These include refining the initial pheromone 

distribution, adjusting the pheromone evaporation rate, and updating the pheromone update 

strategy, along with the integration of a local search tactic. The resulting improved ant colony 

algorithm (IACO) exhibits enhanced search directivity in the early phases of iteration, rapid 

convergence, a reduced likelihood of getting trapped in local optima, and improved search 

precision. Two intricate free-form surface workpieces were crafted, and a variety of MPs were 

randomly produced to evaluate the algorithm's efficacy. Comparative simulation and inspection 

experiments were conducted against the ACO, ABC, and GA. 

The paper is arranged as follows. The second section details the composition of the IP when 

the CMM inspects free-form surfaces and analyses the mathematical model of the IP to be 

optimized. Section 3 summarizes the basic structure of the ACO and introduces the specific 

strategies of the IACO in this paper. Section 4 discusses the experimental simulation results 

and experimental inspection results and analyses the experimental effects of the IACO. Section 

5 provides a summary of the work of this paper. This paper is one of the outcomes of our 

research project. The scope of our research project is the efficient and high-precision inspection 

of free-form surfaces, with the aim of providing theoretical and technical support for precision 

inspection in the context of intelligent manufacturing. 

2. Mathematical model of the free-form surface inspection path 

When the CMM inspects free-form surfaces, the moving trajectory of the probe is as shown 

in Fig. 1. The figure only illustrates the probe movement process for two MPs, and other MPs 

can be used as an example. At the beginning of the inspection work, the probe moves from the 

waiting position to the positioning point (PP) of the first MP (the PP aligns with the normal 

vector of the MP, at a certain safe distance from the MP), then approaches the MP along the 

normal direction of the MP, then retreats to the retreat point (RP), and moves to the next PP; 

the probe experiences changes in speed and acceleration during the movement and inspection 

process, reaching high positioning speed, touch inspection speed, and retreat speed. 
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Fig. 1. Schematic diagram of the local inspection path on a free-form surface. 

Figure 1 shows that when two MPs are inspected, the probe movement path can be divided 

into three subpaths, namely, 𝑑1, 𝑑2 and 𝑙𝑖. Among them, the distances 𝑑1 and 𝑑2 can be 

considered constant and are set by the experimental personnel for the equipment parameters, 

but 𝑙𝑖 is not a constant value. Therefore, when inspection work is implemented, the total 

distance of the probe movement path is as follows: 

 𝐷 = (𝑑1 + 𝑑2)𝑛 + ∑ 𝑙𝑖
𝑛−1
𝑖=1  (1) 

where 𝑛 is the number of MPs, 𝑑1 is the distance from the PP to the corresponding MP, 𝑑2 is 

the distance from the corresponding RP to the MP, 𝑙𝑖 (𝑖 = 1, 2 , … , 𝑛 − 1) is the distance from 

the RP of MP 𝑖 to the PP of MP 𝑖 + 1, and 𝐷 is the total distance of the probe movement 

trajectory when the equipment inspects 𝑛 MPs. 

When the CMM is performing inspection work, because the distance 𝑑1 from the PP to the 

corresponding MP and the retreat distance 𝑑2 are known fixed values, only the distance 𝑙𝑖 
between the RP of MP 𝑖 and the PP of MP 𝑖 + 1 needs to be optimized. To make the probe 

movement trajectory distance as short as possible during inspection work, it is necessary to 

optimize the total MP distance 𝐿 of 𝑛 MPs, which can be taken as the optimization objective 

function and expressed as follows: 

 𝐿 = ∑ 𝑙𝑖
𝑛−1
𝑖=1 = ∑ √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2 + (𝑧𝑖+1 − 𝑧𝑖)2

𝑛−1
𝑖=1  (2) 

where (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) are the spatial coordinates of MP 𝑖 and where (𝑥𝑖+1, 𝑦𝑖+1, 𝑧𝑖+1) are the spatial 

three-dimensional coordinates of MP 𝑖 + 1. 

3. Overview and improvement of the ant colony algorithm  

3.1. Classic ant colony algorithm 

The ACO refers to the foraging behaviour of ants in nature, which discretizes the problem 

and optimizes it into a node model, abstracts the artificial ants to randomly traverse each node 

to construct possible solutions, and then uses a positive feedback mechanism to reasonably 

adjust the pheromone content of the search path to gradually search for the optimal solution. 

When the ACO is used to optimize the IP of free-form surfaces, it is assumed that 𝑚 ants are 
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randomly placed on 𝑛 MPs; the set 𝐶 represents the node set of all MPs; 𝑑𝑖𝑗 represents the 

distance between MP 𝑖 and MP 𝑗; and 𝜏𝑖𝑗 represents the pheromone value on path (𝑖, 𝑗) at 

a certain moment, where 𝜂𝑖𝑗 = 1/𝑑𝑖𝑗 reflects the expected degree of ants transferring from MP 

𝑖 to MP 𝑗 at a certain moment. The basic model of the ACO is as follows: 

1) Pheromone initialization 

 𝜏𝑖𝑗(0) = const (3) 

where 𝜏𝑖𝑗(0) means that at the initial moment, all paths have the same pheromone 

concentration; const is a constant. 

2) State transition probability 

At moment 𝑡, ant 𝑘 independently selects the next unvisited MP according to the transfer 

probability 𝑃𝑖𝑗
𝑘(𝑡) calculated by (4) and records the currently selected MP in the 𝑡𝑎𝑏𝑢𝑘(𝑘 =

1,2,⋯ ,𝑚) list: 

 𝑃𝑖𝑗
𝑘(𝑡) =

{
 

 
𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘 = {𝐶 − 𝑡𝑎𝑏𝑢𝑘}

[𝜏𝑖𝑗(𝑡)]
𝛼
∙[𝜂𝑡𝑘(𝑡)]

𝛽

∑ [𝜏𝑖𝑠(𝑡)]
𝛼∙[𝜂𝑖𝑠(𝑡)]

𝛽
𝑠∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

, 𝑗 ∈

0, 𝑗 ∉ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘 (4) 

where 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘 is the set of MPs that ant 𝑘 can currently choose; 𝛼 represents the pheromone 

heuristic factor, which indicates the extent to which pheromones affect the path chosen by ants; 

𝛽 denotes the expected heuristic factor, signifying the significance of the heuristic function in 

determining the ants' path selection. 

3) Pheromone update 

After all the ants have completed a complete traversal, that is, they have independently 

completed the construction of a complete path solution, the pheromone on the nodes of the 

current feasible solution is updated according to (5): 

 {
𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∙ 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗(𝑡)

∆𝜏𝑖𝑗(𝑡) = ∑ ∆𝜏𝑖𝑗
𝑘 (𝑡)𝑚

𝑘=1

 (5) 

where 𝜌 ∈ (0,1) is the pheromone evaporation coefficient; ∆𝜏𝑖𝑗(𝑡) is the pheromone increment 

released by all ants on path (𝑖, 𝑗) during this search, which is usually defined by the ant cycle 

model via global path information updating: 

 ∆𝜏𝑖𝑗
𝑘 (𝑡) = {

𝑄

𝐿𝑘
, 𝑘 ∈ (𝑖, 𝑗)

0, others
 (6) 

where 𝑄 is the total amount of pheromone and where 𝐿𝑘 is the path length searched by ant 𝑘 in 

this search. 

3.2. Improved ant colony algorithm 

3.2.1. Improvement of the initial pheromone 

In the ACO, when ants start searching, the initial pheromone of each search path is an equal 

constant value, which makes the ACO very blind at the beginning of the iteration, resulting in 

a low search speed. To enhance the algorithm's search capabilities during the early phases, the 

configuration of the initial pheromones has been optimized in the following manner: 

 𝜏𝑖𝑗(0) = {

𝑄

𝑑𝑖𝑗
，if 𝑖 ≠ 𝑗

0，others
 (7) 
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As depicted in (7), the initial pheromone concentration at each MP is set to be inversely 

related to the distance separating the MPs at the commencement of the iteration process, which 

gives the algorithm a certain directionality at the beginning of the iteration, effectively reducing 

the interference of invalid paths and increasing the search speed of the algorithm. 

3.2.2. Improvement of the pheromone evaporation factor 

The pheromone evaporation factor 𝜌 is an important parameter that affects whether the ACO 

can search for the optimal solution because it determines the pheromone content on each search 

path after each iteration of the ACO. The value of the pheromone evaporation factor 𝜌 should 

be set reasonably. If the pheromone evaporation rate is set too high, the pheromones on the 

paths identified during each cycle of the algorithm will dissipate rapidly. This can lead to the 

ACO converging too swiftly, which may result in the omission of potentially superior solutions. 

Conversely, if the evaporation rate is set too low, the ACO might become fixated on suboptimal 

solutions, thereby hindering the discovery of more optimal paths. Therefore, it is crucial to 

adjust the pheromone evaporation rate to an optimal level that prevents premature convergence 

while avoiding stagnation in local optima. This section improves the pheromone evaporation 

factor 𝜌 such that it conforms to the normal distribution. The advantage of the improvement is 

that at the beginning of the iteration, the pheromone is an important reference for ants to choose 

the search path, so a smaller pheromone evaporation factor 𝜌 value can ensure that the algorithm 

passes through the initial iteration quickly and increases the search speed. During the central 

phase of the algorithm's iterative process, the pheromone levels on each potential path remain 

relatively stable, with minimal numerical fluctuations. This constancy can lead the ACO to 

a local optimum. At this juncture, increasing the pheromone evaporation factor 𝜌 can enlarge 

the solution space explored by the ants, facilitating an escape from local optima. As the iteration 

process advances, once all probable paths that could contain the optimal solution have been 

explored, the optimal solution is ascertained. At this point, reducing the pheromone evaporation 

factor 𝜌 enhances the pheromones' guiding influence, thereby hastening the algorithm's 

convergence towards the optimal solution. The improved pheromone evaporation factor is 

determined by (8): 

 𝜌(𝑘) =
1

√2𝜋𝜎
𝑒
−
(𝑘b−𝜇)

2

2𝜎2  (8) 

where 𝑘b is the index of the ant that has currently found the shortest path. 

 𝜇 =
∑ 𝜏𝑘b
𝑚
𝑘=1

𝑚
 (9) 

 𝜎 =
∑ (𝜏𝑖𝑗−𝜇)

2𝑚
𝑘=1

𝑚
 (10) 

where 𝜏𝑘b is the pheromone amount of the shortest path currently found by the ant; 𝜇 is the 

average pheromone amount of the shortest path found by the ant after completing one iteration; 

𝜎 is the variance of the pheromone amounts of the best path and the worst path after completing 

one iteration; and 𝑚 is the total number of ants. 

3.2.3. Differentiated pheromone updating strategy 

The positive feedback mechanism significantly influences the iterative search routine of the 

ACO, dictating the search trajectory of each ant during every iteration by modulating the 

pheromones along the potential paths. The downside is that the adjustment of pheromones only 

takes the path length as a reference standard and does not evaluate the quality of all known 

paths, which makes the adjustment blind and leads to a decrease in the search speed of the 

algorithm. Therefore, this section improves the pheromone updating strategy. After each 
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iteration is completed, the best path length 𝐿best, the worst path length 𝐿worst, and the average 

path length 𝐿ave are calculated; then, a certain amount of pheromone incentive is given to the 

better paths with path lengths less than 𝐿ave, and the pheromone amount of the worse paths 

with path lengths greater than 𝐿ave is reduced. The pheromone increment is calculated via (11): 

 ∆𝜏𝑖𝑗
𝑘 (𝑡) = {

𝐿ave−𝐿𝑘

𝐿ave−𝐿best
∙
1

𝐿𝑘
, 𝐿𝑘 ≤ 𝐿ave

−
𝐿𝑘−𝐿ave

𝐿ave−𝐿best
∙

1

𝐿worst
, 𝐿𝑘 > 𝐿ave 

 (11) 

where ∆𝜏𝑖𝑗
𝑘 (𝑡) is the path length of ant 𝑘 found in this iteration and where 𝐿𝑘 is the average path 

length after this iteration is completed. 

To ensure that the ants in the next iteration continue to search along the better paths, the 

shortest path found in each iteration is given a pheromone reward ∆𝜏𝑖𝑗
∗ , and the improved 

pheromone updating strategy is shown in (12), where it is calculated according to (13): 

 𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∙ 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗
∗  (12) 

 ∆𝜏𝑖𝑗
∗ =

𝑄

𝐿best
 (13) 

Equations (11) to (13) adjust the pheromones on the basis of the known quality of each path. 

Positive feedback adjustment is applied to better IPs, and negative feedback adjustment is 

applied to worse IPs, resulting in the differentiated adjustment of IP pheromones, which 

exploits the better paths that have been searched and increases the search speed of the algorithm 

to a certain extent. 

3.2.4. Local search strategy 

To boost the ACO's capability to escape local optima and to refine its search precision, 

a local exploration is conducted on superior paths that exhibit path lengths below the average 

value 𝐿ave during each cycle of iteration. First, two random numbers 𝑟1 and 𝑟2 (𝑟1 ≠ 𝑟2, 
𝑟1 ≥ 1，𝑟2 ≤ 𝑛) are generated via logistic chaotic mapping, and MPs 𝑟1 and 𝑟2 on the path are 

swapped. If the new path length is shorter after position exchange, the result is accepted; 

otherwise, it is not accepted. The principle of the local search strategy is represented by (14) to 

(15): 

 𝑅 = {𝑃(1), 𝑃(2),⋯ , 𝑃(𝑟1), 𝑃(𝑟1 + 1),⋯ , 𝑃(𝑟2), 𝑃(𝑟2 + 1),⋯ , 𝑃(𝑛)} (14) 

 𝑅′ = {𝑃(1), 𝑃(2),⋯ , 𝑃(𝑟2), 𝑃(𝑟1 + 1),⋯ , 𝑃(𝑟1), 𝑃(𝑟2 + 1),⋯ , 𝑃(𝑛)} (15) 

where 𝑅 is an IP with a path length less than 𝐿ave; 𝑅
′ is the new IP after the local search; 𝑃(𝑛) 

represents MP 𝑛 on a certain path; and 𝑛 (𝑛 ≥ 2) is the number of MPs. 

3.2.5. Steps of the improved ant colony algorithm 

Upon incorporating the aforementioned enhancements into the ACO, the improved version, 

referred to as IACO, demonstrates superior search capabilities and increased search velocity 

compared to the original ACO. The detailed procedure of the IACO is outlined below, with 

a corresponding flowchart depicted in Fig. 2. 

Step 1: The parameters are initialized. The number of ants 𝑚 and pheromone total 𝑄 are 

initialized, the maximum number of iterations 𝑁max is set, the initial pheromone concentration 

𝜏𝑖𝑗(0) of each path is calculated according to (7), the initial pheromone increment ∆𝜏𝑖𝑗(0) = 0 

is set, and the tabu list is initialized such that it is empty. 

Step 2: The initial positions of 𝑚 ants from 𝑛 MPs are randomly selected and added to the 

tabu list. 

Step 3: Each ant selects the next MP according to (4) and updates the tabu list. 
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Step 4: If each MP has been traversed, the shortest path 𝐿best, the longest path 𝐿worst, and 

the average path 𝐿ave are recorded. 

Step 5: According to (14) and (15), a local search is performed on the better paths with path 

lengths less than 𝐿ave. If the new path is shorter, it is accepted, and the path record is updated; 

otherwise, it is not accepted. 

Step 6: The pheromone concentration of each path is updated according to (11) to (13). 

Step 7: It is ascertained whether the iteration has attained the maximum allowable count. If 

it has, the iteration is ended, and the shortest path is output; otherwise, step 2 is repeated, and 

the next iteration is started. 

 

Fig. 2. Flowchart of the improved ant colony algorithm. 

4. Experiments and analysis of results 

4.1. Simulation experiment 

To assess the practicality of the IACO within this study, two specimens with intricate free-

form surfaces were fabricated for simulation purposes, as illustrated in Fig. 3. Here, the base 

dimensions of workpiece 1 are 110 mm × 110 mm × 8.2 mm, and the main body dimensions 

are 80 mm × 80 mm × 7.3 mm; while the base dimensions and main body dimensions of 

workpiece 2 are 120 mm × 120 mm × 10 mm and 100 mm × 100 mm × 75.9 mm, respectively. 

The figure shows that there is a large difference in the complexity of the two workpieces, among 

which workpiece (b) has a more complex surface shape, a large span in the height direction, 

and a large change in curvature. To simulate complex inspection conditions, MPs were 

randomly generated on each surface model, taking 200 MPs as an example, as shown in Fig. 4. 
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Fig. 3. CAD model for the simulation experiment: workpiece 1 (left) and workpiece 2 (right). 

 

Fig. 4. MP distribution: workpiece 1 (left) and workpiece 2 (right). 

The program was written in MATLAB 2022b software, and the IACO was compared with 

the ACO, GA, and ABC. The algorithm parameters were set as follows: m = 30, Q = 30, N = 0, 

Nmax = 500 and 𝜏𝑖𝑗(0) = 0. For illustrative purposes, this study utilizes 200 MPs that are 

randomly dispersed to exemplify the optimization process. Figures 5 and 6 present the 

optimization outcomes for the IP of two free-form surface workpieces, labeled as workpiece 1 

and workpiece 2, respectively, using a variety of optimization algorithms. Additionally, Fig. 7 

illustrates the iterative progression of each optimization algorithm as they perform IP 

optimization on the two workpieces. 

Figures 5 and 6 show that, compared with those of the ACO, GA, and ABC, the IP optimized 

by the IACO is neater and more aesthetically pleasing, and there is no local intersection in the 

IP, which can effectively reduce unnecessary IP consumption. The iterative process of the 

various algorithms in Fig. 7 shows that, compared with the ACO, the IACO has a better initial 

solution due to the reasonable improvement in the initial pheromone distribution, has strong 

search directionality, and can search for the optimal solution more quickly. Thanks to the 

application of a differentiated pheromone update approach and an optimal pheromone 

evaporation rate, the IACO manages to secure a higher quality of optimal solutions. In contrast, 

the ACO frequently encounters issues with local optima and suffers from reduced search 

precision. The GA exhibits a sluggish convergence rate and inferior solution quality, with 

a propensity for a decline in population diversity as the iteration progresses. Meanwhile, the 

ABC exhibits a heightened dependency on the initial solution, and while it demonstrates better 

convergence and search accuracy than the GA, it still falls short when compared to the IACO. 

In conclusion, the IACO demonstrates superior overall performance over the ACO, GA, and 

ABC, showcasing robust directional search capabilities early in the iteration process, rapid 

convergence, robustness against local optima, and high search precision. 
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Fig. 5. Optimization results of the inspection path for workpiece 1 via various algorithms. 

 

Fig. 6. Optimization results of the inspection path for workpiece 2 via various algorithms. 
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Fig. 7. Iteration process of various algorithms for optimizing the inspection path: workpiece 1 (left) and 

workpiece 2 (right). 

Table 1. Simulation results for different MP quantities on each workpiece. 

Results Workpiece 1 Workpiece 2 

MPs  100 200 300 100 200 300 

𝐷GA(mm) 681.85 1166.78 2261.33 907.62 1262.38 2198.03 

𝐷ABC(mm) 627.47 954.88 1570.25 863.87 1247.92 1574.01 

𝐷ACO(mm) 634.54 936.55 1203.26 849.23 1249.06 1237.53 

𝐷IACO(mm) 619.25 858.13 1160.75 830.58 1139.84 1122.52 

1 − 𝐷IACO 𝐷GA⁄  9.18% 26.45% 48.67% 8.49% 9.71% 48.9% 

1 − 𝐷IACO 𝐷ABC⁄  1.31% 10.13% 26.08% 3.85% 8.66% 28.68% 

1 − 𝐷IACO 𝐷ACO⁄  2.41% 8.37% 3.53% 2.2% 8.74% 9.29% 

 

Table 1 shows the experimental simulation results of different MP quantities for the two 

free-form surface workpieces. In the text, 𝐷IACO represents the IP length optimized by IACO, 

with the optimization results of other algorithms following suit. Compared with that optimized 

by the ACO, when the MPs is 100, the IP optimized by the IACO is shortened by at least 2.2% 

and by 2.41% at most; when the MPs is 200, the IP optimized by the IACO is shortened by at 

least 8.37% and 8.74% at most; and when the MPs is 300, the IP optimized by the IACO is 

shortened by at least 3.53% and 9.29% at most. Compared with that optimized the ABC, when 

the MPs are 100, 200, and 300, the IP optimized by the IACO is shortened by 3.85%, 10.13%, 

and 28.68% at most, respectively; compared with that optimized by the GA, when the MPs are 

100, 200, and 300, the IP optimized by the IACO is shortened by 9.18%, 26.45%, and 48.9% 

at most, respectively. 

Table 2 shows the time spent on optimizing the IP by each optimization algorithm. In the 

text, 𝑇R−IACO represents the time expenditure of the IACO, with the time costs of other 

algorithms being analogous. The data in Table 2 indicate that because the IACO has good search 

directionality from the beginning of the iteration, the time required for optimization is relatively 

short. 

Table 2. Time spent on optimizing the inspection path by different optimization algorithms. 

Results Workpiece 1 Workpiece 2 

MPs 100 200 300 100 200 300 

𝑇R−GA(s) 69 135 187 72 133 191 

𝑇R−ABC(s) 95 198 310 97 196 305 

𝑇R−ACO(s) 59 113 165 61 111 162 

𝑇R−IACO(s) 37 41 54 38 43 58 
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4.2. Inspection experiment 

Free-form surface workpiece 1 and workpiece 2 were placed on a German Hexagon Leitz 

Reference HP CMM for inspection experiments. The software used by this CMM is PC-DMIS. 

The accuracy of the CMM: MPEE  =  0.9 + L/400μm. The diameter of the probe standard is 

5 mm, and the positioning distance and retreat distance of the probe are both 10 mm. The 

moving speed of the probe is set to 20 mm/s. The IPs optimized by the IACO, ACO, GA, and 

ABC were experimentally inspected. The experimental process is shown in Fig. 8, and the IT 

spent on each workpiece is shown in Table 3. Table 4 shows the total time spent on each 

optimization algorithm, where TT−IACO represents the total time spent by the IACO, including 

the time spent on the optimization process 𝑇R−IACO and the inspection process 𝑇I−IACO, and the 

time spent by other optimization algorithms is similarly defined. 

Table 3 shows that under basically the same experimental conditions, the shorter the IP of 

the free-form surface is, the shorter the IT required for the CMM inspection experiment. Among 

them, the IP optimized by the IACO takes the shortest IT. Compared with that optimized by the 

ACO, when the MPs is 100, the IT of the IP optimized by the IACO is shortened by at least 

5.08% and 5.27% at most; when the MPs is 200, the IT of the IP optimized by the IACO is 

shortened by at least 10.85% and 10.86% at most; and when the MPs is 300, the IT of the IP 

optimized by the IACO is shortened by at least 14.42% 14.75% and at most. Compared with 

that improved by the ABC, when the MPs are 100, 200, and 300, the IT of the IP optimized by 

the IACO is shortened by 10.84%, 17.78%, and 23.59% at most, respectively; compared with 

that optimized. By the GA, when the MPs are 100, 200, and 300, the IT of the IP optimized by 

the IACO is shortened by 11.52%, 19.22%, and 34.21% at most, respectively. On the other 

hand, the data in Table 1 show that the more MPs there are in the optimization of the IP of the 

free-form surface workpiece by the IACO, the more obvious the optimization effect. 

 

Fig. 8. CMM inspection process: workpiece 1 (left) and workpiece 2 (right). 

Table 3. Inspection time for different inspection paths. 

Results Workpiece 1 Workpiece 2 

MPs 100 200 300 100 200 300 

𝑇I−GA(s) 620 1176 2540 709 1149 2668 

𝑇I−ABC(s) 580 1090 2038 678 1132 2215 

𝑇I−ACO(s) 586 1075 1771 667 1133 1873 

𝑇I−IACO(s) 574 1018 1605 653 1066 1598 
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Table 4. Total time spent and efficiency comparison. 

Results Workpiece 1 Workpiece 2 

MPs 100 200 300 100 200 300 

𝑇T−GA(s) 689 1311 2727 781 1282 2859 

𝑇T−ABC(s) 675 1288 2348 775 1328 2520 

𝑇T−ACO(s) 645 1188 1946 728 1244 1935 

𝑇T−IACO(s) 611 1059 1659 691 1109 1656 

1 − 𝑇T−IACO 𝑇T−GA⁄  11.32% 19.22% 34.21% 11.52% 13.49% 32% 

1 − 𝑇T−IACO 𝑇T−ABC⁄  9.48% 17.78% 23.59% 10.84% 16.49% 22.86% 

1 − 𝑇T−IACO 𝑇T−ACO⁄  5.27% 10.86% 14.75% 5.08% 10.85% 14.42% 

5. Conclusions 

To address the disordered IPs and long IT encountered when CMMs inspect free-form 

surface parts, this work uses the IACO for the IP planning of free-form surfaces, which can 

effectively shorten the IP and time. The ACO suffers from prolonged search duration and 

susceptibility to getting trapped in local optima. This work made improvements, including 

improvements in the initial pheromone distribution, the pheromone evaporation factor, the 

pheromone update strategy, and introduced a local search strategy. After simulation 

experiments and inspection experiments, compared with those optimized by the ACO, ABC 

and GA, the inspection efficiency optimized by the IACO increased by up to 14.75%, 23.59% 

and 34.21%, respectively. The experimental results show that the IACO of this paper can 

improve the work efficiency when the CMM inspects free-form surfaces and can effectively 

shorten the IT. 

However, the factors that determine the inspection efficiency of free-form surfaces are not 

only the length of the IP but also closely related to the number and distribution of MPs. In the 

actual inspection of free-form surfaces, only a reasonable number of MPs and an appropriate 

layout can accurately reflect the form error of free-form surfaces. The experiments in this paper 

used 100, 200, and 300 randomly distributed MPs, which cannot fully reflect the errors of free-

form surfaces. This paper merely provides a reference algorithm for optimizing the IP of free-

form products (such as blades, impellers, molds, etc.) to further improve inspection efficiency. 

The actual number and layout of MPs used in the inspection process should still be determined 

based on specific circumstances. This paper does not consider the impact of different numbers 

and layouts of MPs on the inspection accuracy of free-form surfaces, and the IACO proposed 

in this paper is only applicable to the optimization of IPs for free-form surfaces with a small 

number of MPs. Therefore, for future work, we will explore large-scale MP inspection 

technologies for free-form surfaces and include the impact of different numbers and 

distributions of MPs on the inspection accuracy of free-form surfaces in the scope of 

consideration. 
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