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Abstract 

This paper presents a new algorithm for fast uncertainty evaluation of root mean square (RMS) voltage 

measurement This algorithm enables the evaluation of the expanded measurement uncertainty and partial 

uncertainties, which are useful in metrological analysis of the measurement. It can be used for any measurement 

system in which the RMS value is determined based on voltage samples. Various sources of uncertainty have been 

considered for this measurement system. The proposed algorithm is easier to implement than the commonly used 

uncertainty propagation method. Its operating principle is based on the Monte Carlo method. However, it allows 

the computation of the RMS measurement uncertainty within a significantly shorter time compared with the 

classical Monte Carlo method. The simulation and experimental results presented in this paper confirm the correct 

operation of the new algorithm and the acceleration of uncertainty computations up to 200 times in RMS 

measurement based on 1000 voltage samples. 

Keywords: Algorithm, measurement uncertainty evaluation, Monte Carlo method, RMS voltage, uncertainty 

budget. 

1. Introduction 

The effective value of electric voltage, usually called the root mean square (RMS) voltage, 

is one of the basic quantities measured in electrical engineering and automation [1]. Both RMS 

measurement methods and their uncertainties have been the subject of numerous publications 

[2]–[13]. RMS measurement methods based on voltage samples are gaining popularity in the 

technology [6]–[10]. 

In a scenario where the measured effective value is determined based on samples of the 

analysed voltage, estimating the measurement uncertainty is not straightforward. In such cases, 

the measurement results are influenced by various sources of uncertainty [6]–[9]. In addition, 

each sample should be treated as a separate measurement of the instantaneous voltage. 

Therefore, determining the measurement uncertainty using the classical method according to 

the Guide [14], applying the law of uncertainty propagation, is inherently difficult and complex. 

For such intricate measurements, the Monte Carlo (MC) method [15], which is simpler to 

implement, can be applied, as in [6], [16]. The drawback of this method (hereinafter, referred 

to as the classical MC method) for evaluating the uncertainty of the effective value is the large 

number of iterations required, which results in a relatively long computational time. The 

computational time is important in scientific and design studies, where a large amount of data 

are aggregated and processed in assessing the uncertainty. Therefore, it is essential to accelerate 

the computations and obtain reliable and repeatable uncertainty results. 

The problem of the relatively long computational time of the RMS measurement uncertainty 

has not been addressed in the literature, which inspired the authors of this paper to tackle this 
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issue. For this reason, the authors developed a new algorithm to significantly accelerate the 

evaluation of uncertainty. 

The new algorithm is also based on the MC method. However, it significantly reduces the 

computational time compared with the classical MC method. This algorithm enables the 

evaluation of the measurement uncertainty of the effective value determined based on the root 

mean square value of samples collected at a time corresponding to a multiple of the period of 

the analysed alternating voltage. The advantage of the proposed algorithm and classical MC 

method over uncertainty propagation method [14] is the ability to analyse uncertainties in the 

form of intervals that do not need to be symmetric with respect to zero. 

To verify and compare the operation of the proposed algorithm with that of the classical MC 

method [6], [15], the authors conducted studies to evaluate the expanded uncertainty intervals 

for various measurement scenarios. In addition, the authors created an uncertainty budget for a 

measurement system example. The uncertainty budget makes it possible to analyse the effect 

of the sources of uncertainty on the measurement results and indicate which effects should be 

reduced to achieve better results. This approach is crucial for precise measurements, where the 

aim is to eliminate the sources of uncertainty [6]–[8]. In this research, the authors assumed that 

the sources of uncertainty were the parameters errors and digital processing errors of sinusoidal 

voltage. These errors included the fundamental voltage measurement error, frequency error, 

and sampling frequency error. The uncertainty was also influenced by the initial phase of the 

voltage, zero error (offset), and accompanying noise. 

The paper consists of six sections and two appendices. Section 2 defines the concept of the 

effective value of the sinusoidal electric voltage and presents the obtained analytical equations. 

Section 3 introduces a new algorithm for fast evaluation of the expanded measurement 

uncertainty of the effective value. Section 4 presents the simulation and experimental results. 

In Section 5, the authors evaluated the computational time of the proposed algorithm. The 

authors summarised the study in Section 6. Appendices and the cited references are provided at 

the end of this paper. 

2. Effective value 

Similarly to the works [6]−[9], it was assumed that the effective value of the sinusoidal 

voltage is measured with a constant or random initial phase and the voltage is accompanied by 

disturbances in the form of a DC component and Gaussian noise. On this basis let us consider 

a measurement system enabling the acquisition of a sinusoidal electric voltage: 

 ( ) ( )0 m sin 2π φ ,  0 ,  0 ,= +     v t V f t t T T  (1) 

where Vm, , f and T are respectively the amplitude, initial phase, frequency, and period of the 

voltage. 

Let us assume that the voltage v0(t) is accompanied by a DC component V0 and an 

independent additive Gaussian noise q(t) with a fixed expected value q and standard deviation 

q. In this way, we obtain the voltage: 

 ( ) ( ) ( ) ( ) ( )0 0 m 0sin 2π φ .= + + = + + +v t q t V V f t q t Vv t  (2) 

If v(t) is uniformly sampled with a sampling frequency fs, then the samples v[n] of the voltage 

can be described by the formulas: 

      0 0v v q ,  0, 1,..., 1,= + + = −n n n V n M  (3) 

   ( )0 m 0v sin φ ,=  +n V n  (4) 
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where: 

 0 02π , 0 , =    
s

f

f
 (5) 

wherein v0[n] and q[n] are samples of the signal v0(t) and noise q(t), respectively. 

Let us denote by RMSe the estimator of the effective value (RMS value). To compute RMSe 

the generalised mean can be employed: 

 ( )  ( )

1
1

0

1
m̂ , s ,

−

=

 
=  
 


M rr

n

r n
M

s  (6) 

where r is an affinely extended real number [17], and s is an M-element vector of samples s[n] 

of a periodically varying voltage s(t). Let us assume that: 

 ( )e ˆRMS m ,2= v  (7) 

is an estimator of the parameter: 

 0RMS ,= vP  (8) 

calculated from (6) and M-element vector v of samples v[n] of the voltage v(t), where: 

 
0

2
m

2
=v

V
P  (9) 

is the mean power of the voltage v0(t). Then the RMSe estimator is biased and has non-zero 

variance (see Appendix A), i.e.: 

 

  ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

22

e 0 0 0 0

2

22

0 0 0 0

ˆ ˆb RMS m , 2 2 m ,1 RMS

σ 1
             1 ,

ˆ ˆ2 m , 2 2 m ,1

  + + +  + −

 
+ − 

  + + +  +

q q

q

q q

V V

MV V

v v

v v

 (10) 

  
2

e

σ
Var RMS ,

q

M
 (11) 

where v0 is an M-element vector of samples v0[n] from formula (4). 

Let: 

 2
eP  RMS=  (12) 

be an estimator of the mean power Pv0 from formula (9). If we substitute (3) into (12), the power 

P can be brought to the following form: 

 

 ( )      ( )    
1 1 1 1 1

2 20 02
0 0 00

0 0 0 0 0

0

1 2 2 1 2
P v v q  q v q

2
  P 2 m P v ,

− − − − −

= = = = =

= + + + + +

= + + +

    
M M M M M

n n n n n

T
v q q

V V
V n n n n n n

M M M M M

V
M

0 q

 (13) 

where q is an M-element vector of samples q[n], and v0
Tq is the scalar product of vectors v0 

and q. Moreover: 

 2
00P 2 ,= + + v P mV V  (14) 

 ( )ˆm m ,1 ,=q q  (15) 
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 ( )( )
2

ˆP m ,2 ,=q q  (16) 

where: 

 
0

m
0

0

sin
12

sin ,
2

sin
2

 
  −   =  +    

 
 

m

M

V M

M
 (17) 

 

( )

( )
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2 2
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0
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m
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P
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 (18) 

Let q0 be the vector of samples q0[n] = q[n] − q. Then the formula (13) takes the form: 

 

( )  ( )      

 ( )      

1 1 1 1
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q
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 (19) 

Analogously to (13), the formula (19) can be transformed into the following form: 

 ( ) 0 0 0

2

0 0 0

2
P 2 2 2 m P 2 m ,= + + +  +   + + +  + T

q P m q m q q q qV V V
M

00v q  (20) 

where: 

 ( )0 0ˆm m ,1 ,=q q  (21) 

 ( )( )0

2

0ˆP m ,2 .=q q  (22) 

After rearranging formula (20), we obtain: 

 ( ) ( )
2

0 0P 2 ,= + + + +  +q P q mV V c  (23) 

where: 

 ( )0 00

2
P 2 m .= + + + T

q q qc V
M

00v q  (24) 

If M is sufficiently large, then: 

 ( ) ( )
2 2

0 0P 2 .  + + +  +  +q P q m qV V  (25) 

We observe that if the sampling is coherent (samples are collected within a measurement 

window corresponding to an integer number of voltage periods), then m = 0 and P = Pv0. In 

this case, P  (q + V0)
2 + Pv0 + q

2. However, if v(t) is sampled at the Nyquist frequency, i.e. 

fs = 2f and  = l, l = 0, 1, 2, then m = P = 0 and P  (q + V0)
2 + q

2. 

The performed operations resulted in the extraction of components c and q
2 from (23) and 

(25) associated with q(t) in the estimator P. This allowed for the development of a new 

algorithm for fast evaluation of the expanded uncertainty in a system for measurement of the 

effective value. 
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3. Algorithm for fast evaluation of the measurement uncertainty of the effective value 

The proposed algorithm and classical MC method operate on the data obtained using the 

procedure shown in Table 1. The input parameters (Input data) of the procedure include 

sinusoidal voltage parameters, digital processing parameters, limiting errors Vm
*, f*, fs

* 

(expressed in %), V0
* (expressed in V) of these parameters, and the number of experimental 

repetitions K. These errors are determined based on the documentation of a measuring 

equipment. In practice, it is often assumed that the expected value of the Gaussian noise is equal 

to zero. Therefore, we assume that q = 0 when the data are generated. 

Table 1. Data generation procedure. 

Input data: Vm, SNR, Vm
*, f*, fs

*, V0
*, K. 

Step 1. Calculate: 

(a) mean power Pv0 based on (9) and Vm; 

(b) RMS value based on (8) and Pv0; 

(c) standard deviation q based on (26), Pv0 and SNR. 

Step 2. Generate K - element vectors Vm, f, fs, V0 and  based on (27), Vm
*, f*, fs

* and V0
*. 

Output data: Vm, f, fs, V0, , q, RMS. 

 

In Step 1, the power Pv0, RMS value, and standard deviation of the Gaussian noise are 

calculated as follows: 

 
0

SNR

10σ 10
−

= vq P , (26) 

where SNR is the signal-to-noise ratio expressed in decibels (dB). In Step 2, vectors Vm, f, 

fs, V0, and  are generated, consisting of K elements m̂V , ˆf , ˆ sf , 0̂V  and , with: 

 
     

 

* * * *
m m

* *

0

m

* *
0 0

ˆ ~ ,  ~ ,  ˆ ˆ,  ,  ,  

,  [ ].

~ ,  

ˆ ~ ,  ~ 0,  2

 −   −   − 

−  

s s sf fV V V f f f

V

f

V V

R R R

R R
 (27) 

From formula (27), it follows that the elements of the vectors are random numbers with  

a rectangular (uniform) distribution R[a, b], where a and b are the endpoints of the interval. 

The obtained data are used as the output of the procedure (Output data). 

Table 2 presents our new algorithm for fast evaluation of the measurement uncertainty of 

the effective value. The algorithm is based on formulas (23) and (25). Because formula (23) 

involves an iterative component c and formula (25) underestimates Pv0, to accelerate the 

computations and avoid underestimation, we propose to replace c with the correction ĉ , which 

is a random number with a normal (Gaussian) distribution: 

 ( )ˆ ~ , , P Pc N  (28) 

where the mean value P and the standard deviation P are equal, as follows: 

Table 2. Algorithm for fast evaluation of measurement uncertainty of the effective value. 

Input data: Vm, f, fs, V0, , Vm, f, fs, RMS, K, p, M, q; 

Step 1. Assume k = 1. 

Step 2. Determine: 

(a) parameters mV̂  and 0̂  based on (30), Vm, f, fs, and k-th elements m̂V , f̂ , ŝf  of vectors Vm, 

f, fs; 

(b) coefficients ˆm  and ˆP  based on (17), (18), mV̂ , 0̂ , M, and k-th element  of vector ; 

(c) power P̂v  based on (14), ˆm , ˆP  and k-th element 0̂V  of vector V0. 
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 2 2 2
2 1ˆ ˆ,  P 2 m .

2
 =   =   + +  + P q P q q v q v q

M
 (29) 

The components P̂v  and m̂v  in formula (29) are calculated based on formulas (14) and 

(A.51) For this purpose, we use coefficients ˆm  and ˆP  determined based on formulas (17) and 

(18) as well as parameters M, , and 0V̂ , as follows: 

 
m

m m 0

ˆ
1

100
ˆ1 ,  ,

ˆ100
1

100

ˆ
ˆ

 
+     

= +  =  
  
+  

 
s

s

f
f

V V
f

f

V
 (30) 

where m̂V , ˆf , ˆ sf , 0V̂ , and  are given by formula (27). 

In this manner, we obtain a non-iterative estimator: 

 ( ) ( )
2

0 0ˆ ˆˆP ˆ ˆ2 + + + +  +q P q mV V c  (31) 

of power Pv0. Since we assume q = 0, 

 2
00

ˆˆ ˆ ˆ ˆP 2 P ,ˆ ˆ + +  + = +P m vV c cV  (32) 

where P̂v  is derived from formula (14). In addition, the correction parameters in (28) take the 

following forms: 

 2 2
2 ˆ,  2P . =   =  +P q P q v q

M
 (33) 

The correction in formula (28) was developed by calculating the variance Var[P] of the 

estimator P from formula (12) (see Appendix B). This correction eliminates the possibility of 

underestimating P due to failure to include the components, caused by the noise q(t) appearing 

in the voltage v(t), in formula (25). Based on the variance, the standard deviation P is 

determined from formula (29). The form of parameter P, however, results from formula (25). 

In this manner, data can be generated whose parameters (i.e. variance and expected value) 

correspond to the parameters of the data obtained by calculating c from formula (24). 

The proposed algorithm is executed in seven steps. The input data for the algorithm are 

obtained based on the procedure shown in Table 1 (Output data). Because the algorithm is 

based on the MC method, it considers the coverage probability p  (0, 1) and K, assuming that 

K > 104/(1 − p) [15]. 

Step 3. Generate correction ĉ  based on (28), (33), P̂v , q, and M. 

Step 4. Calculate: 

(a) power P based on (32), ˆm , ˆP , ĉ  and k-th element 0̂V  of vector V0; 

(b) estimator RMSe based on (34) and P. 

Step 5. Determine the error RMS based on (35), RMSe, and RMS. Store RMS. 

Step 6. Assume k = k + 1. If k ≤ K, repeat steps 2 – 5. If k > K, create K-element vector RMS based on 

stored RMS. 

Step 7. Evaluate the endpoints Ulow and Uhigh of the expanded uncertainty interval based on [15] and RMS, 

K, p. Calculate the mean value mRMS and standard deviation RMS from RMS. 

Output data: Ulow, Uhigh, mRMS, RMS. 
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After initialising the algorithm (Step 1), the parameters m̂V , 0̂ , ̂m , ̂P , and P̂v  are 

determined (Step 2). In Step 3, the value of correction (28) is generated. After determining the 

correction (Step 4), the power P is calculated based on formula (32) and the RMSe is calculated 

based on the following formula: 

 eRMS P.=  (34) 

Then, the error: 

 RMS eRMS RMS = −  (35) 

of the estimator RMSe of the RMS parameter is determined and stored (Step 5). The process of 

determining the error in formula (35) is repeated K−1 times (Step 6). As a result of this 

operation, a vector of errors RMS is obtained. In the last step (Step 7), the endpoints Ulow and 

Uhigh of the coverage interval of the effective value measurement error are evaluated based on 

the recommendations of [15] using RMS, K, and p. Furthermore, based on RMS, the mean value 

mRMS and the standard deviation RMS are calculated. The results of the algorithm are Ulow, 

Uhigh, mRMS, and RMS (Output data). Because RMS is known from formula (8), then 

coverage interval (Ulow, Uhigh) can be treated as the expanded uncertainty interval of the 

effective value measurement based on the estimator (34) for coverage probability p. 

4. Research results 

4.1. Simulation results 

4.1.1. Application of the proposed algorithm to evaluate the expanded measurement 

uncertainty 

Simulations were conducted to evaluate the expanded uncertainty intervals of the effective 

value. The data generation procedure (Table 1) and the proposed algorithm (Table 2) were used 

for this purpose. The interval results were compared with those obtained using the classical MC 

method [6], [15]. The effects of the Gaussian noise, number of samples M, and frequency f on 

the interval results were examined. PTC Mathcad Prime software was used in this study. The 

data presented in Table 3 were inputted into the data generation procedure (Table 1) and 

proposed algorithm (Table 2). 

The results showed the consistency of the expanded uncertainty intervals for the proposed 

algorithm and the classical MC method for all measurement cases considered in this study 

(Table 4 and Fig. 1). To distinguish the expanded uncertainty intervals in Table 4 for the 

different methods, the lower and upper endpoints (Ulow and Uhigh) of the intervals are presented 

with three significant digits. 

In this study, p = 0.99 was assumed to achieve a high reliability of the uncertainty evaluation 

results in simulations and experiments. This assumption was made to prevent underestimation 

of the uncertainty in the experiments. The proposed algorithm also allows the determination of 

the uncertainty for other values of p, such as p = 0.95. 

Table 3. Input parameters for the procedure from Table 1 and the algorithm from Table 2. 

Name Symbol Set value 

Amplitude Vm 9 V 

Frequency f 100−1100 Hz 

Sampling frequency fs 12500 Hz 

Number of samples M 100−1000 

Initial phase  R[0, 2] 
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Zero error (offset) V0
* 6.38 mV 

Amplitude error Vm
* 0.0914% 

Frequency error f* 0.02% 

Sampling frequency error fs* 0.01% 

Number of repetitions K 106 

Coverage probability p 0.99 

Signal-to-noise ratio SNR 40 dB 

 

 

 

Fig. 1. Expanded uncertainty intervals as a function of SNR, M and f for (a) f = 500 Hz, M = 250, (b) f = 500 Hz, 

SNR = 40 dB, and (c) M = 250, SNR = 40 dB. 

Table 4. Examples of expanded uncertainty intervals from Fig. 1. 

 
Classical  

MC method 
New algorithm 

Fig. 1a SNR = 40 dB 
Ulow (mV) − 0.0129 − 0.0127 

Uhigh (mV) 0.0135 0.0135 

Fig. 1b M = 250 
Ulow (mV) − 0.0129 − 0.0132 

Uhigh (mV) 0.0133 0.0131 

Fig. 1c f = 500 Hz 
Ulow (mV) − 0.0126 − 0.0126 

Uhigh (mV) 0.0133 0.0137 

 

From the conducted research, it follows that: 

- an increase in SNR and M results in reduction of expanded uncertainty intervals (Figs. 1a 

and 1b), 
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- the smallest expanded uncertainty intervals are obtained under coherent sampling 

conditions, while failure to adhere to coherent sampling conditions leads to a significant 

increase in the intervals (Fig. 1c). 

4.1.2. Application of the proposed algorithm for uncertainty budget determination 

The proposed algorithm (Table 2) and classical MC method can be applied to construct an 

uncertainty budget for measuring the effective value of the sinusoidal voltage [6], [15]. To 

demonstrate this, we further conducted simulations concerning the measurement of the 

effective value using an exemplary measurement system. We assumed that in the measurement 

system, the voltage source was an Agilent 33220A function generator, and voltage sampling 

was performed using a PCI 6024E data acquisition card. We also assumed that the voltage 

samples were transmitted to a computer, which calculated the effective value based on voltage 

samples and formula (7). 

Table 5 presents the assumed parameter settings for the Agilent 33220A function generator, 

setting parameters for the PCI 6024E data acquisition card, and the limiting errors of these 

parameters obtained from the technical specifications of the instruments used. In addition, 

Table 5 provides information on the sources of noise present in the measured voltage. This 

enables the generation of noise with standard deviation: 

 
( ) ( )

2 2
* *
G C , =  + q

 (36) 

where G
* and C

* are the standard deviations of the function generator noise and data 

acquisition card noise, respectively. 

Table 5. Parameters of the tested measurement system. 

Name Symbol Set value 

Voltage amplitude Vm 9 V 

Voltage frequency f 500 Hz 

Initial phase  R[0, 2] 

PCI card measurement range VFS ±10 V 

Sampling frequency fs 12500 sps 

Number of samples M 250 

Voltage frequency error f* 0.02% 

Standard deviation of noise in 

generator voltage 
G

* 
2.02 mV 

(SNR = 70 dB) 

PCI card A/D converter basic error Vm
* 0.0914% 

PCI Card offset voltage V0
* 6.38 mV 

Standard deviation of noise in A/D 

converter voltage 
C

* 3.91 mV 

PCI card time base error fs* 0.01% 

 

If the frequency of the signal is unknown, then it must be measured, and its accuracy must 

be determined to introduce these data into the proposed algorithm. If G is unknown, then the 

type A uncertainty of the RMS voltage measurement, which is caused by random disturbances 

in the entire system, can be determined from a series of measurement results. In this case, the 

proposed algorithm allows the determination of type B uncertainty (q = 0 is introduced into 

the algorithm). 

Based on the data in Table 5, an uncertainty budget for measuring the effective value was 

created, as presented in Table 6. Similar to [6], the input quantities related to the limiting errors 

are presented in the simulated budget, namely, the standard uncertainties, probability 
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distributions of these quantities, sensitivity coefficients, partial standard uncertainties 

(contributing to the combined uncertainty), and combined standard uncertainties. 

The results confirmed the correctness of the proposed algorithm for evaluating the 

uncertainty because, for each source of uncertainty (input parameter), the results were similar 

to those obtained using the classical MC method. For both methods, the observed differences 

were at the level of repeatability of the simulations. Moreover, the obtained uncertainty budget 

confirmed the usefulness of the algorithm for evaluating the metrological properties of the 

measurement system. Based on the presented uncertainty budget, it can be deduced that in the 

analysed measurement case, the primary influence on the measurement uncertainty comes from 

the basic error of the data acquisition card (Vm
*). 

Table 6. Uncertainty budget of the effective value measurement for the tested measurement system.  

Symbol 
Quantity 

estimate 

Standard 

uncertainty 

Probability 

distribution 

Sensitivity 

coefficient 

 

New  

algorithm 1) 

Classical MC 

method 2) 

u - contribution to the 

combined standard 

uncertainty (mV) 

f 0 % 0.02/ 3 % rectangular 2277 mV 0.263 0.263 

G 0 V 2.02 mV normal 0.0634 0.128 0.128 

Vm 0 % 0.0914/ 3 % rectangular 6367 mV 3.36 3.36 

V0 0 V 6.38/ 3  mV rectangular 0.0000863 0.000954 0.000954 

C 0 V 3.91 mV normal 0.06321)/0.06372) 0.247 0.249 

fs 0 % 0.01/ 3 % rectangular 2269 mV 0.131 0.131 

∆RMS 0.00 mV    3.39 3.39 

 

4.2. Experimental results 

Experiments were conducted to compare the measurement results of the effective value 

VRMS_PCI obtained by the PCI 6024E data acquisition card and the uncertainties Ulow and Uhigh 

obtained from simulations using the proposed algorithm with the measurement results of the 

effective value VRMS_HP obtained by the HP 34401A multimeter with the expanded uncertainties 

UHP determined by the uncertainty propagation method [14]. 

A measurement system, whose scheme is presented in Fig. 2, was constructed in this 

research. In this measurement system, sinusoidal voltage was generated using an Agilent 

33220A function generator. This voltage was processed using two circuits. In the first circuit, 

the voltage was sampled using a 12-bit A/D converter located on the PCI 6024E data acquisition 

card, from which the sample values were sent to the computer memory. In the second circuit, 

the effective value was measured using an HP 34401A multimeter, and the measurement result 

was transmitted to the computer. 

The computer memory included a measurement application developed in  

a LabWindows/CVI environment. The application allowed the configuration of both 

measurement devices (data acquisition card and multimeter), simultaneous start of 

measurements by both devices, reading of data from both devices, and computation of the 

effective value based on the voltage samples. The measurements were triggered by the software. 

In addition, the measurements were performed multiple times so that the scatter of the results 

could be considered in the uncertainty computations. 
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Fig. 2. Computer system for measuring the effective value using a PCI 6024E data acquisition card and HP 

34401A multimeter. 

The results of the single measurements of the effective values for the data acquisition card 

and multimeter (VRMS_PCI and VRMS_HP) and the computed expanded measurement uncertainties 

are presented in Table 7. The measurements were conducted for different voltage frequencies 

set on the Agilent 33220A function generator, assuming that the voltage amplitude setting on 

the function generator and the processing parameters of the data acquisition card were 

consistent with those presented in Table 5. It can be observed that for frequencies of 50, 500, 

and 5000 Hz, theoretically coherent sampling of the voltage occurred, which was advantageous 

for the algorithm used to determine the RMS voltage. In other words, the smallest measurement 

uncertainties were obtained (see Section 4.1.1). However, the values of these set frequencies 

were biased by the function generator limit error f* with  

a value of 0.02%. For the other frequencies, the given frequency errors were larger because 

they were determined relative to the aforementioned frequencies treated as references. For 

example, for f = 4990 Hz, the relative error with respect to the nearest nominal value of 5000 

Hz was −0.2%. Therefore, to evaluate the uncertainty interval (Ulow, Uhigh) using the proposed 

algorithm, we assumed that the error f* was within ± 0.2%. For the multimeter, the expanded 

measurement uncertainty was calculated using the following formula: 

 

( )
( )RMS_HP

2
*
HP 2

HP ,
3


= + p VU k

 (37) 

where HP
* was the measurement limiting error of the effective value, which was calculated 

based on the manufacturer’s data of the multimeter (HP
* = 0.06% VRMS_HP + 0.003), VRMS_HP 

was the standard deviation determined based on 10 sequential results of VRMS_HP, and kp = 3

p was the coverage factor for the dominant rectangular distribution in the measurement and 

coverage probability of p = 0.99 [14]. 

The uncertainties presented in Table 7 were evaluated for a coverage probability of  

p = 0.99. This high value of p was deliberately chosen to avoid underestimating the uncertainty 

of the VRMS_PCI measurement resulting from the fact that the actual error of f is at the limit of 

the assumed distribution of the error value f used in the simulations to evaluate Ulow and Uhigh. 

To compare the measurement results and uncertainties for both instruments, the coverage 

intervals were determined, which are the intervals that should contain the true effective value 

Vtrue. For measurements with the PCI 6024E data acquisition card, based on the simulated 

uncertainty intervals and measured voltages VRMS_PCI, the coverage intervals (VRMS_PCI + Ulow, 

VRMS_PCI + Uhigh) were determined analogous to those in [6], [18]. Meanwhile, for the HP 

34401A multimeter, the coverage intervals were determined as (VRMS_HP − UHP, VRMS_HP + UHP). 

The results obtained for the considered measurement cases are summarised in Fig. 3. 
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Table 7. Measurement results and expanded uncertainties for p = 0.99. 

Measurement case PCI 6024E card HP 34401A multimeter 

No 
f f* VRMS_PCI Ulow Uhigh VRMS_HP VRMS_HP HP

*
 UHP 

(Hz) (%) (V) (mV) (mV) (V) (mV) (mV) (mV) 

1 49.9 0.2 6.3584 −10.1 9.95 6.3503 0.094 6.9 6.8 

2 49.95 0.1 6.3554 −7.7 7.7 6.3502 0.082 6.9 6.8 

3 50 0.02 6.3581 −6.1 6.1 6.3501 0.061 6.9 6.8 

4 499 0.2 6.3517 −10.1 10.1 6.3528 0.069 6.9 6.8 

5 499.5 0.1 6.3571 −7.6 7.7 6.3529 0.086 6.9 6.8 

6 500 0.02 6.3576 −6.1 6.1 6.3526 0.080 6.9 6.8 

7 4990 0.2 6.3669 −22.9 23.0 6.3600 0.084 6.9 6.8 

8 4995 0.1 6.3583 −15.3 15.6 6.3598 0.062 6.9 6.8 

9 5000 0.02 6.3649 −7.5 7.6 6.3598 0.089 6.9 6.8 

 

 

Fig. 3. Coverage intervals (intervals containing the true effective value Vtrue) for effective value measurements 

carried out using the PCI 6024E data acquisition card and HP 34401 multimeter for various measurement cases 

from Table 7. 

By analysing the obtained measurement results and computed uncertainties, their 

consistency could be observed. The coverage interval for the measurements performed using 

the PCI 6024E data acquisition card overlapped with the coverage interval obtained for the HP 

34401 multimeter for each measurement case. This confirmed the correctness of the uncertainty 

calculations using the proposed algorithm. Furthermore, it can be noticed that under conditions 

closest to the coherent sampling (f* = 0.02%), the measurement uncertainties of the voltage 

VRMS_PCI were comparable to the uncertainties for a commercial meter with relatively good 

metrological properties, such as the HP 34401A. A drawback of the digital algorithm for 

determining the RMS voltage is its sensitivity to non-coherent sampling, which is reflected in 

larger uncertainty intervals for larger errors of f*. A solution to this problem is to determine 

the frequency of the analysed alternating voltage based on its samples. Following this, for a 

voltage of theoretically any frequency, the number of samples M corresponding to the integer 

number of periods can be determined. 

Subsequently, the effective value can be calculated based on these samples. In this case, the 

error f* can be determined from the relationship fs
* + 1/M. Hence, f* = 0.02% for  

M = 10000. 

In summary, the experimental results confirmed the correct operation of the proposed 

algorithm in evaluating the measurement uncertainty of the effective value. 
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5. Time complexity study 

A study to measure the time required to evaluate uncertainty intervals using both the new 

algorithm and the classical MC method was conducted. To do this, both algorithms were 

implemented in the Mathcad Prime computer program in the form of a dynamic worksheet [19]. 

The time measurements were performed using the function time() from Mathcad program. The 

created worksheet was run on a PC with Windows 10 operating system equipped with an Intel 

Core i7−13700K processor and 32 GB of Kingston DDR5 6000 MHz RAM. 

Figure 4 and Table 8 present the times required to evaluate uncertainty intervals obtained by 

averaging the results of 10 repetitions of the simulation. Each of the times consists of data 

generation time and algorithm execution time. The data generation time using the procedure 

from Table 1 is common for both algorithms. The research was conducted with voltage 

parameters and parameters of its digital processing as in Table 3. 

 

Fig. 4. Times of evaluating expanded uncertainty intervals expressed in seconds and ratio of the times. 

Table 8. Times of evaluating expanded uncertainty intervals expressed in seconds. 

Number of 

samples 

Time for the 

classical MC 

method 

(s) 

Time for the 

new algorithm 

(s) 

M = 100 31.124 1.821 

M = 250 86.398 1.894 

M = 500 197.083 1.872 

M = 750 294.343 1.864 

M = 1000 390.624 1.943 

 

The research results confirmed the high utility of the developed algorithm. Depending on M, 

the time required to evaluate a single uncertainty interval was from over 15 times (for M = 100) 

to over 200 times (for M = 1000) shorter than when using the classical MC method (ratio of the 

times on Fig. 4). The time to evaluate the uncertainty using the new algorithm depended only 

slightly on the number of samples M. Whereas, in the case of the classical method, the 

computation time was strongly correlated with M. 
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6. Conclusions 

This paper presents a new algorithm for fast uncertainty evaluation in digital measurements 

of the effective voltage. Digital measurements are based on the acquisition of signal samples, 

which makes it difficult to use the uncertainty determination method based on the Guide [14]. 

Such measurements are easier to analyse using the classical MC method [15]. Even though this 

method is relatively easy to apply, it comes at the expense of long computational time. Our 

proposed algorithm is based on the MC method. Its advantage is its relatively simple 

implementation compared with uncertainty propagation method. At the same time, it is free 

from the disadvantages of the classical MC method and it can compute the measurement 

uncertainty within a significantly shorter time. 

The algorithm presented in this paper makes it possible to evaluate the expanded uncertainty 

of the RMS voltage measurement as well as the combined standard uncertainty and partial 

standard uncertainties, which allows the creation of an uncertainty budget. The proposed 

algorithm provides a universal tool for analysing the metrological properties of any sample-

based RMS voltage measurements. This paper presents the application of the proposed 

algorithm for an exemplary measurement system. However, the algorithm can be used in the 

metrological analysis of other measurement systems that are characterised by sources of 

uncertainty such as fundamental voltage measurement error, frequency error, sampling 

frequency error, zero error (offset), and noise. At the same time, the authors recommend using 

the developed algorithm in the coherent sampling mode. This is because the non-coherent 

sampling mode, resulting from the mismatch of the set sampling frequency of the A/D converter 

to the voltage frequency, is itself a source of uncertainty. The time required to evaluate the 

uncertainty is not dependent on the type of measurement system, but on the performance of the 

computer used. The ratio of the time required for the new algorithm to the time required for the 

classical MC method increased with an increase in the number of voltage samples. For example, 

for 1000 samples, the proposed algorithm was more than 200 times faster than the classical MC 

method. 

The advantages of the proposed algorithm for evaluating the uncertainty in RMS voltage 

measurement indicate its potential as a software tool for analysing the properties of existing 

measurement systems. Moreover, this tool can be used in the design of new measurement 

systems, sampling voltmeters, wattmeters, and power network parameter meters, which use 

digital RMS measurements based on voltage samples. Reducing the time required to evaluate 

uncertainty in the design process allows faster analysis of various design solutions. The 

significantly shorter time for evaluating the uncertainty also indicates the potential of 

implementing the proposed algorithm in the future, such as in sampling voltmeters, where the 

user can set the sampling parameters, and the voltmeter software will provide the measurement 

result along with its uncertainty. 
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APPENDIX  

A. Variance and bias of the effective value estimator 

The variance of the RMSe estimator from formula (7) of the RMS parameter from formula 

(8) can be calculated as follows [20]: 
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At the same time: 
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Then: 
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The bias of the RMSe estimator is equal to: 
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Since: 
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then: 

 

  ( )
( )

 ( )

( )( )

( )

 ( )

( )( )

2
2

0 0

e 0 3
20 0

2
2

0 0

3
20 0

v 0σ 1
ˆb RMS m ,2 RMS

ˆ2 m ,2 m̂ ,2

v 1σ 1
             .

ˆ2 m ,2 m̂ ,2

 + +
  − + −
 
 

 − + +
 + + −
 
 

K

qq

qq

V

M M

M V

M M

w
w w

w w
 (A.45) 

Thus: 

 

  ( )
( ) ( )( )

 ( )

( )
( )

12 2
2

e 0 0 03
0 00

2

0

0

σ 1 σ 1
ˆb RMS m ,2 RMS v

ˆ2 m ,2 2 m̂ ,2

σ 1
ˆ              m ,2 1 RMS.

ˆ2m ,2

−

=

 − + − + +

 
= + − − 

 


M

q q
q

n

q

n V
M M

M

w
w w

w
w

 (A.46) 

Substituting (A.40) into (A.46), we obtain: 

 

  ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

22

e 0 0 0 0

2

22

0 0 0 0

ˆ ˆb RMS m ,2 2 m ,1 RMS

σ 1
               1 .

ˆ ˆ2 m ,2 2 m ,1

 + + + + −

 
+ − 

 + + + +

q q

q

q q

V V

MV V

v v

v v
 (A.47) 

From (13) and (14) it follows that: 

 
( ) ( )( )

2

0 0ˆ ˆm ,1 ,  m ,2 . =  =m Pv v
 (A.48) 

Then: 

 

  ( ) ( )

( ) ( )

2

e 0 0

2

2

0 0

b RMS 2 RMS

σ 1
               1 .

2 2

 + + + +  −

 
+ − 

 + + + + 

q P q m

q

q P q m

V V

MV V
 (A.49) 
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The formula (A.49) can be transformed into the following form: 

 

 
2

2
e

2

σ 1
b RMS P 2 m RMS 1 ,

2 P 2 m

 
  + +  − + − 

 + +   

q
q v q v

q v q v M
 (A.50) 

where Pv is given by the formula (14), while: 

 0m .= +v mV  (A.51) 

B. Variance of the mean power estimator 

In order to calculate the variance of the estimator P from formula (12) of the power Pv0 from 

formula (9), we use the formula [21]: 

 

 
 

( )( )
 

( )( )

 
( )( )

 
( )( )

221 14 2
2 2

2
0 0

2
0 00 0

1 3
2 2

4
0 0

3
0 00

σ
ˆ ˆVar P σ m ,2 m ,2

v 2 v

ˆ ˆ           σ m ,2 m ,2 ,
v v

− −

= =

−

=

   
 +       

 
+

 

 



M M
q

q

n n

M

q

n

n n

n n

w w

w w

 (B.1) 

where 
( )0m̂ , 2w

 is given by the formula (A.40). Hence: 

 

 
( )( )  ( )

 
( )( )  ( )

2

0 0 0

0

2

0 0 0

0

2
m̂ ,2 v 0 ,

v 0

2
m̂ ,2 v 1 ,

v 1


= + +




= − + +

 −

M

q

q

V
M

M V
M M

w

w

 (B.2) 

  
( )( )

 
( )( )

2 2
2 2

0 0
2 2

0 0

2 2
ˆ ˆm ,2 ,  , m ,2 ,

v 0 v 1

 
= =

  −
K

M M M
w w

 (B.3) 

  
( )( )

 
( )( )

3 3
2 2

0 0
3 3

0 0

ˆ ˆm ,2 0,  , m ,2 0,
v 0 v 1

 
= =

  −
K

M
w w

 (B.4) 

then: 

   ( )  ( )

 ( )

4
2 2

2
0 0 0 0

2 2 2 2

1 4
2

2
0 0

0

4 4 σ 4 4
Var P σ v 0 v 1

2

4 1 2σ
           σ v .

−

=

   
 + + + + − + + + + +   

   

  
= + + +  

  


K K
q

q q q

M
q

q q

n

V M V
M M M M

n V
M M M

 (B.5) 

Therefore: 

 

  ( )  ( ) ( )  

( ) ( )( ) ( ) ( )( )

1 1
222

0 0 0 0

0 0

4 2 4
22

0 0 0 0

4 1 1
Var P σ v 2 v

2σ 4 2
ˆ ˆ           m , 2 2 m ,1 .

− −

= =

  
 + + + +  

  

 
+ = + + + + +

 
M M

q q q

n n

q q q
q q

V n V n
M M M

V V
M M M

v v
 (B.6) 

At the same time, it follows from (A.48) that: 

 
  ( ) ( )( )

2 4
2

0 0

4 2
Var P 2 .

 
 + + + +  +

q q
q P q mV V

M M  (B.7) 
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Then: 

 
  ( ) ( )

2 2
0 0

2 1
Var P 2 .

2
 = =  + + + +  + P q q P q m qV V

M  (B.8) 

The above formula can be transformed into the following form: 

 

2 2
2 1

P 2 m ,
2

 =   + +  + P q q v q v q

M  (B.9) 

where Pv and mv are given by the formulas (14) and (A.51). 


