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Abstract 

The paper presents the type A evaluation of the standard uncertainty when the result of measurement is determined 

by digital averaging of the input signal, which is distorted by simultaneous influence of the random uncorrelated 

noise and the power line interference. It was shown that the classical evaluation of uncertainty based on 

determining of the standard deviation of input observations is no sufficient, because it does not take into account 

the effect of suppression of the interference by averaging. To correctly evaluate uncertainty, both the amplitude of 

the interference component and the standard deviation of the random component should be estimated separately. 

The simple methods of separate estimation of these components are proposed and analyzed in detail. The proposed 

solutions to the uncertainty evaluation were studied when uniform and triangle averaging are used and verified 

both by Monte Carlo simulations and by experiment tests. The simulation and test results obtained showed very 

good accordance with theoretical results. 
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1. Introduction 

The classical approach [1] to the evaluation the Type A uncertainty takes into account the 

influence of random noise (usually uncorrelated). The standard uncertainty is determined by 

the well - known expression [1]: 

 ( )
n

s
Xu x

A = , (1) 

where ( )
=

−−=
n

i

ix xxns
1

2)()1(1  is estimator of the standard deviation calculated from n 

observations of input signal, x  is a signal mean value. 

However, in measurement practice, especially in industrial practice, in addition to random 

noise, periodic interference from the industrial power line is very often present. The nominal 

frequency of such interferences is 50 Hz (60 Hz in North America) [2], [3]. Power line 

interference penetrates the measurement chain through different parasitic connections: 

inductances, capacitances, insulation resistances, and also by common wires, the grounding, 

etc. [4] - [6]. The level of interference depends on the power level, the configuration of the 

parasitic connection and distance between the measuring circuit and power line, etc. That is, 

the level of power line interference may be several tens of times, or even sometimes more, 

higher than the level of random noise [2]. 
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The power line interferences parameters are not stable. Namely, the relative frequency 

variations are allowed within δf = ± 1% (that is from 49.5 Hz up to 50 5 Hz) for 99.5 % of each 

one-year period, and variations may be as high as from - 6% to +4%, that is from 47 Hz up to 

52 Hz for the whole period (European standard EN 50160 [7]). Significantly higher frequency 

instabilities may occur in power systems for mobile vehicles (marine ships, aircraft, etc.). In 

such power systems, the frequency instability may be ± 5 % and for transient frequency 

components may be as high as ± 10% [8].  

Measurement problems related to these interferences and their suppression, mainly by 

filtering and averaging, have been studied, analyzed, and discussed in various sources [9] - [16]. 

Namely, to reduce the impact of such interference, software filters can be used, which are 

available, for example, in the Advanced Analysis Toolkit for LabVIEW [13]. The problems of 

reducing the effects of interference and suppressing noise by filtering during biomedical signal 

processing are described in [14] - [16]. 

However, from a metrological point of view, it is not enough to ensure the required 

suppression of power lines interference and random noise, but it is necessary to estimate the 

uncertainty of such measurements [1].  

The aim of the following research are: (i) to clarify the problems of a correct evaluation the 

uncertainty of measuring a signal distorted by periodic interference and random noise, (ii) to 

propose the methods for separate estimation the parameters of these components to correctly 

evaluate the uncertainty, and (iii) to test the effectiveness of the proposed methods using Monte 

Carlo simulation and by measurement experiments. 

2. Problems of standard uncertainty evaluation caused by power line interference and 

random noise 

Evaluation of the uncertainty in the case of simultaneous influence of both components on 

the measured signal involves a significant problem. In the present study, the measured signal 

model vin(t) comprises, in addition to the so-called information component Vx, the power line 

interference component vint(t) with amplitude Vm, frequency f and initial phase φ, and the 

random noise component vn(t) of a standard deviation σn, i.e.: 

 ( ) ( ) ( ) ( )tvftVVtvtvVtv nmxintnxin +++=++= )2cos(  . (2) 

To reduce the influence of the both components the averaging of the n input observations 

)( iini tvv =  at sampling time moments ti = iTs (Ts is a sampling period (Fig. 1 a)) is usually 

used. The averaging interval is nav mTT = , where m is a number of interference nominal period: 

Tn=1/fn [13]. Then the average value can be expressed as: 
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where ( )mintav V,  is the error caused by the averaging of the power line interference and 

rndav, is an error caused by the averaging of the random noise. When the origin of time 

coordinate is located in the middle of the averaging time interval Tav, i.e. the averaging interval 

is between 2/avT−  and 2/avT+ , the last component after simplification can be presented as: 
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where avfTv =  is normalized (to the averaging time Tav interval) interference frequency f.  
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The influence of such interference on the measured signal is quantified usually by the NMRR 

– Normal Mode Rejection Ratio [2]. This value is determined on a decibel scale as the ratio of 

the interference amplitude Vm and the maximal value of the error module ( )
max, mintav V : 

( ) 
max,log20NMRR mintavm VV = . The maximum effect of cosine interference (4) occurs at 

the initial phase φ = 0, therefore NMRR of the uniform averaging is: 

 
( )
( ) 













−=

nv

nv





sin

sin
log20NMRR . (5) 

From (5) it follows that all harmonics of the power line interference with numbers 

k = 1, 2,…, n – 1 are completely rejected. But, when the interference frequency differs from the 

nominal fn by a relative value ( ) ( ) nnnnf vvvfff −=−= , the error ( ) fmmintav VV 
max, . 

Thus NMRR of uniform averaging is limited by 1/ f , and ( )flog20NMRR −  (Fig. 1, b). 

When a maximum frequency deviation of the electrical power system is up to δf = ±1 % the 

usual averaging provides about 100 times interference reduction or NMRR is limited at a level 

of 40 dB (Fig. 1, b). When δf = ±5 % (±2.5 Hz) the NMRR decreases to ≈ 25.6 dB (Fig. 1, b). 

 

Fig. 1. Uniform (wUn, blue) and triangle (wTr, red) weight functions for n = 16 (a); NMRR at frequency deviation 

δf (%) around fn = 50 Hz when using averaging with uniform (blue) and triangle (red) weight functions. 

To increase a NMRR, special weighting functions (windows) [17] can be used. The result 

of weight averaging (weighted mean value) of input observations is: 
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where )...,,2,1( niwi =  are the weighting coefficients. Here the weight function used is 

symmetric about its center and normalized, i.e. 1
1

=
=

n

i

iw . The sampling period is nTT avs = . 

In (6) it can be seen that the last sum represents the discrete Fourier transform of the weighting 

function (DFTW) – spectral characteristic of the weighting averaging. Therefore, the NMRR is 

determined by logarithm of modulus of the DFTW: 

 ( ) ( ) ( )
=

==
n
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2cos  , ( )vGWFlog20NMRR −= . (7) 

From the point of view of high suppression of periodic interference, a triangle weight 

function (Fig.1, a) is very useful. For the even n, the DFTW of such function is:  
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For the DFTW (8) of the triangle weight function the width of main lobe is v0Tr= 2, therefore 

the width of triangle function must be twice of the interference period: Tav = TTr = 2T. Using 

the triangle weight function for a maximum frequency deviation δf = ±1 % the maximal 

interference averaging error is: ( ) mfmmintav VVV 42

max, 10−=  . That is, this function provides 

a 104 - fold interference suppression (NMRR is about 80 dB (Fig. 1, b)), which is 100 times 

more than in uniform averaging.  

Based on the general approach to determine the variance of the averaging in (6), there are 

two components of the variance: the first is caused by the averaging of the power line 

interference ( 2

.intav ), and the second is caused by the averaging of the random noise ( 2

.nav ): 

2
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navintavav  += . Because from (4), (6) and (7) ( ) ( )vGVV WFmmintav 
max, , assuming uniform 

distribution of the interference phase φ, the variance of the interference averaging can be 

presented as: ( ) ( )vGV WFmintav

222

, 2= . For uncorrelated noise observations the variance of the 

second component is: nC nWFnav /222
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i
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22 . Therefore, the variance of the 

signal averaging in (6) is: 

 ( ) ( )vGVnC WFmnWFav

22222 2/ +=  . (9) 

The standard uncertainty of measurement is a root square of the variance (9): 

 ( ) ( ) ( )vnGCVuvGVnCVu WFWFtheornAWFmnWFavtheorA

222

,

2222 HNR)(2/ +=+==  , (10) 

where nVu ntheornA =,)(  is a Type A theoretical standard uncertainty, when only 

uncorrelated random noise distorts input signal. The quantity ( )2HNR nmV =  is the so-

called harmonic to noise ratio, which reflects the influence of the power line interference. 

From (10) we can see that for the averaging used (known GWF(v) and CWF) to determinate 

the standard uncertainty ( )VuA , the ratio HNR also must be known. In other words, the 

interference amplitude Vm and the standard deviation σn of random noise must be known 

separately. However, using the estimated standard deviation sv,in of input observations: 
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the standard uncertainty due to procedure GUM [1] is:  

 ( ) 2
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Comparing (10) and (12), taken into account that CWF≈ 1 (for uniform weight function 

CWF= 1 and for triangle one CWF≈ 1.14), we see that the impact of the standard deviation of 

random noise σn in both expressions is practically the same. But the impact of the interference 

amplitude ( )2HNR nmV =  is quite different. In correct expression (10) this component is: 

( )vnGWF

22HNR , i.e. is proportional to the square of HNR multiplied by the square of the DFTW 

GWF(v) of the weight function used and the number n of observations. But in (12) the impact of 

the interference amplitude is proportional to the square of HNR only. Fig. 2 shows the 

dependence on the HNR of the coefficients 
2

, HNR1+=GUMuAC  (12), 
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, HNR1+=  and ( )vGnCC TrTrTruA

222

, HNR+=  for the uniform and triangle 

averaging (10), on which the corresponding standard uncertainty values depend. 

 

Fig. 2. Dependences of the coefficients CuA,GUM, CuA,Un, and CuA,Tr on the value of the HNR for n = 40 (a) and 

n = 100 (b). 

From the graphs in Fig. 2, it can be seen that even at a relatively low level of interference: 

HNR ≈ 1, the CuA,GUM coefficient, which is used to calculate the uncertainty according to the 

(12), differs significantly from the true value. That is, when HNR = 1, the value of CuA,GUM is 

approximately 1.4 times greater than the actual value. When HNR > 1 the value of CuA,GUM is 

approximately proportional to HNR. This causes a corresponding increase in the standard 

uncertainty uA,GUM(V). For example, when HNR = 10, then the calculated standard uncertainty 

uA,GUM(V) will be even more than 10 times larger than the true one. 

From Fig. 2 can also be seen that using uniform averaging, due to the limitation of the 

interference suppression ( ( ) 210−vGUn = 0.01), the significant influence of the interference on 

the standard uncertainty value starts at HNR ≈> 10 for n = 40 and at HNR ≈> 5 for n = 100. On 

the other hand, when triangular averaging is used, due to the high suppression of the 

interference up to ( ) 410−vGTr = 0.0001, the standard uncertainty value practically is 

independent on the interference level even for HNR < 100. 

In order to demonstrate this important problem, the following numerical example is 

presented. The n = 40 observations (in mV) of the measured signal were registered using the 

DAQcard and are given in Table 1. 

Table 1. The n = 40 observations (in mV) of the measured signal. 

185.049 183.682 183.745 179.947 176.754 176.263 169.678 168.622 166.186 165.153 

165.969 166.388 165.478 166.979 170.564 172.891 178.664 180.555 183.519 185.912 

184.923 185.525 185.762 178.975 178.083 176.114 172.333 170.138 168.468 166.157 

164.396 164.619 168.402 166.839 170.355 172.069 176.398 176.833 184.164 182.51 

 

These observations are obtained by sampling (using the frequency fs=1000 Hz) of the signal 

Vx= 175 mV distorted by the random noise of the standard deviation σn= 1.5 mV and the power 

line interference of amplitude Vm= 10 mV (HNR ≈ 4.7) and frequency f= 49.5 Hz. Using 

uniform and triangular averaging (6), the measurement results are as follows: 

Vx,meas,Un= 174.627 mV and Vx,meas,Tr= 174.909 mV. The corresponding error values are: ΔUn≈-

0.373 mV and ΔTr≈ -0.091 mV. Estimated by the first part of (11), standard deviation of the 

input observations is sv,in≈ 7.338 mV. This value practically totally depends on the interference 

amplitude: sVm= 2mV  7.07 mV. Therefore, the standard uncertainty, calculated according 

to the generally accepted GUM [1] method (12), is: 

mV2.140mV34.7)( , == nsVu invGUMxA . For confidence level p = 0.95 the expanded 

uncertainty determined due to [1] is at least 2 times greater, that is about 2.32 mV. 
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Based on a comparison of the error values (ΔUn≈ - 0.373 mV and ΔTr≈ - 0.091 mV) 

determined above with the expanded uncertainty (≈ 2.32 mV), it can be seen that the differences 

between them are very large (about ≈ 7 and ≈ 25 times). Therefore, the uncertainty determined 

according to the classical GUM method [1] (12) is highly inaccurate. This is quite consistent 

with the results of the theoretical analysis and Fig. 2 given above. The obvious reason for this 

is the failure to take into account the suppression of the interference component by means of 

appropriate averaging.  

Theoretical values of the standard uncertainties are: 

24.040mV5.1)( , =theornA Vu mV;  

mV14.1714.41mV237.0)( 2

, +=GUMtheorA Vu ; 

mV25.001.040714.41mV237.0)( 22

, +=UntheorA Vu ; 

mV27.00001.040714.4141.1mV237.0)( 222

, +=TrtheorA Vu . 

Therefore, the standard uncertainty uA(V)theor, GUM ≈ 1.14 mV (and also expanded), 

determined according to the rule [1], i.e. by the estimated standard deviation of the input 

observations (11), (12), may differ significantly, even several times or more, from the correct 

value. Comparing the standard uncertainty values 0.25 mV (uniform averaging) and 0.27 mV 

(triangular averaging) with the standard uncertainty 0.24 mV determined by considering only 

the random component demonstrates their good accordance.  

3. Separate estimation of power line interference and random components  

It follows from the analysis of (10) and the example presented above that in order to correctly 

determine the standard uncertainty of measurement the amplitude Vm of the harmonic 

component and standard deviation σn of the random component should be known. In signal 

analysis, a similar problem applies to determining the parameters of a harmonic signal distorted 

by random noise [18], [29], [20]. Since the results of the estimation of the standard deviation 

and amplitude are used for the evaluation of uncertainty, a high accuracy of the estimation of 

these parameters is not required. Uncertainty in parameter estimation of a few percent or even 

higher is acceptable. Therefore, simple methods can be used to estimate the parameters of these 

distortions.  

It is clear that a priori information on the interference frequency (period) should be used to 

estimate the parameters of the two components. In general, two simple approaches are possible. 

In the first method, the periodic interference parameters are first estimated. Then the standard 

deviation of the noise component is estimated based on these parameters and the input samples. 

In the second method, the reverse order is used: the standard deviation of the noise component 

is estimated first, and then one calculates the interference amplitude. 

Method 1. When knowing the nominal frequency fn of the interference and also the sampling 

frequency fs, the most simple method to estimate the amplitude Vm,k,est and phase φk,est of the k-

th harmonics is calculating using the Fourier series [21] of the signal observations: 
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After estimating the amplitudes and phases (14) of the harmonic component, using the 

average value V  (6), the standard deviation sn is determined making use of the differences 
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Applying this method only for the main harmonic component (K = 1) to the data in Table 1, 

we obtain the following values: Vcos = 5.020 mV; Vsin = 0.384 mV; Vm,1 = 10.070 mV; 

φ0 = 0.076 rad; sn,1 = 1.467 mV. Assuming maximum frequency deviation ±1 %, the estimated 

standard uncertainties for the method GUM [1] (12) and for uniform and triangle averaging 

(10) using are the following: 
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≈ 0.26 mV. 

As can be seen, these estimated values are very close to the theoretical values (1.14 mV, 

0.25 mV and 0.27 mV respectively) determined above. 

Method 2. Another, simpler, method can also be used. In this method the random component 

is estimated directly by the differences inv , of the input observations iinv , , 
1, niinv +  in adjacent 

periods of interference (n1 is a number of observations in the interference period): 

 ( ) ( ) 2/2/ ,,,,, 11 inniniinniinin vvvvv −−= ++ . (16) 

The variation )var( v  is: 22

n , therefore, the estimated value of the standard deviation of 

the random component is equal to: 
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Using estimated value invs ,  (11) of the input signal and standard deviation sn,2 (17), the 

estimated value of the amplitude of the interference component is:  

 2

2,

2

,2, 2 ninvm ssV − . (18) 

Applying this method to the data in Table 1 gives the following results: 2,ns = 1.373 mV (17) 

and 2,mV  = 10.195 mV (18). Therefore, the standard uncertainties estimated by method 2 are 

the following: 
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≈ 0.25 mV. 

The estimated values obtained are also very close to the theoretical values determined above. 

It should be noted, that the standard deviations sv,in (11) and sn,2 (17) always estimated 

inaccurately. As a result of these inaccuracies at the low level of interference amplitude, when 

HNR < 1, a situation may appears in which sv,in < sn,2. Therefore, the value of the interference 

amplitude according to (18) will not always be calculated correctly. That is the use of this 

method is not recommended with a low level of interference (HNR ≈< 1). 

4. Results of simulation and experimental studies 

In order to check the correctness of the above results, two alternative methods were used: 

Monte Carlo simulations [22] and experimental tests.  

4.1.  Monte Carlo simulation results 

Monte Carlo simulation involves two main steps. At the first step the start parameters of this 

study were established. The value of the informative voltage is Vx = 500 mV; the parameters of 

interference component are: nominal frequency fn =50 Hz, the limits of instability 

δf,lim = ±1.0 %, initial phase is changed in the range ±π and 7 values of interference amplitude 

were tested: Vm = 10 mV, 20 mV, 50mV, 100 mV, 200 mV, 500 mV, 1000 mV. The standard 

deviation of the random component is σn = 7.071 mV, for which the harmonic to noise ratios 

are the following: HNR = 1, 2, 5, 10, 20, 50, 100.  

For each amplitude Vm, the M = 105 random values of the interference frequency in range 

Hz5.50Hz5.49  f  and uniformly distributed random phases in the range –π ≤ φ ≤ +π are 

generated. For the random component, the 105 sets of the n = 40 normally distributed random 

values with zero expected value and standard deviation σn = 7.071 mV are generated. 

Therefore, the M = 105 (j=1,…,n) tested signal realisations (2) of n = 40 observations are 

prepared.  

In the second step the following values are determined: 

1) average values jTrjUn VV ,, ,  and corresponding standard deviations sv,in,j (11) of input 

signal realizations;  

2) standard uncertainties uA(V)j, theor, GUM (12) due to the GUM procedure [1] for known 

values of Vm and σn; 

3) theoretical standard uncertainties uA(V)theor, Un, uA(V)theor, Tr (10) for known values of Vm 

and σn and for uniform and triangle averaging; 

4) estimators of the interference amplitude Vm,1,j (14), Vm,2,j (18) and noise standard 

deviations sn,1,j (15), sn,2,j (17) estimated by both methods; 

5) estimators of the standard uncertainties uA(V)j,Un, 1, uA(V)j,Tr, 1 and uA(V)j,Un, 2, uA(V)j,Tr, 2 by 

(10) using estimators of interference amplitude (Vm,1,j, Vm,2,j) and noise standard 

deviations (sn,1,j, sn,2,j) for uniform and triangle averaging. 

The mean values of the uncertainties uA(V)theor, GUM and also determined for the uniform and 

triangle averaging theoretical values uA(V)theor, Un, uA(V)theor, Tr (for a known Vm and σn) 

normalized to the ratio 118.1/ =nn  are shown in Fig. 3. From this figure it can be seen that 

the standard uncertainty determined by Monte Carlo simulation according to the GUM 

procedure [1] is consistent with the results of the theoretical analysis, which are shown in 

Fig. 2,a.  
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Fig. 3. Dependence on HNR of the normalized to σn/√n values of average standard uncertainties uA(V)theor, GUM 

calculated according to GUM and theoretical uncertainties uA(V)theor,Un, uA(V)theor,Tr using uniform and triangular 

averaging. 

The normalized to Vm mean values of the interference amplitude Vm,MC, 1, Vm,MC, 2 estimated 

by both methods are shown in Fig. 4,a. As can be seen, the both methods ensured estimation of 

the interference amplitude with imprecision about a few percent, which is acceptable from the 

point of view of uncertainty evaluation. Fig. 4,b shows the normalized to σn mean values of 

noise standard deviations sn,MC,1/σn, sn,MC,2/σn. From this figure it can be seen that in general 

Method 1, based on previous interference amplitude estimation, provides better results in 

comparison with results obtained by Method 2 based on direct estimation of noise standard 

deviation. That is, when HNR > 10, the normalized mean values increase to about: 1.05 

(HNR = 20), 1.36 (HNR = 50) and 2.07 (HNR = 100) using estimation Method 1 and 1.14 

(HNR = 20), 1.60 (HNR = 50) and 2.58 (HNR = 100) respectively using Method 2. Besides, at 

HNR > 20, the instability in determining the noise standard deviation by both methods increases 

significantly.  

 

Fig. 4. The dependences on HNR of the normalized to Vm mean values Vm,MC, 1, Vm,MC, 2 of the interference 

amplitude (a) and normalized to σn mean values sn,MC, 1, sn,MC, 2 of the noise standard deviation (b). 

In Fig. 5 the normalized to σn/√n mean values of standard uncertainties values uA(V)MC,Un,1, 

uA(V)MC,Un, 2, uA(V)MC,Tr, 1, uA(V)MC,Tr, 2 determined using uniform and triangle averaging and also 

theoretical uncertainties uA(V)theor, Un, uA(V)theor, Tr are shown. From Fig. 5 it can be seen that at 

HNR ≈≤ 10 both uniform and triangle averaging practically ensures quite acceptable 

uncertainty values. However, at HNR > 10 using uniform averaging, the standard uncertainty 

increases more than 6 times at HNR = 100. This increase in uncertainty is consistent with the 

theoretical relationship (6) and is caused by insufficient interference suppression in uniform 

averaging. Using triangular averaging at HNR ≈≥ 20 also results in an increase in standard 

uncertainty, but this increase is about 2.5 times smaller. The main reason for the increase in 

uncertainty is the lack of adequate accuracy in estimating the standard deviation of noise at high 

values of interference amplitude, i.e., at HNR ≈≥ 20, especially when using Method 2. 
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Fig. 5. The dependence on HNR of the normalized to σn/√n mean values of standard uncertainties uA(V)MC,Un, 1 

and uA(V)MC,Un, 2 determined using uniform averaging (a) and mean values of standard uncertainties uA(V)MC,Tr, 1 

and uA(V)MC,Tr, 2 determined using triangle averaging (b) and also theoretical uncertainties uA(V)theor, Un, 

uA(V)theor, Tr. 

One of the main reasons for the insufficient accuracy of the noise standard deviation 

estimation is the lack of knowledge of the actual value of the interference frequency. In both 

methods of estimating of the interference and random components it is assumed that the 

interference frequency is nominal: fn= 50 Hz, period Tn= 20 ms. While, as noted above, the 

actual value of the interference frequency may differ from the nominal value by ±1 %. 

Additional processing of noisy signal samples, such as those described in [19], [20], can be 

used to determine the actual interference frequency. For this purpose, the frequency of the 

power line voltage could also be measured during the signal acquisition. The resulting 

measurement of the actual frequency (period) could be used in (13) - (18) to estimate Vm and 

σn. However, this requires additional research, which is beyond the scope of this article. 

4.2. Experimental results 

Test stand. Experimental verification of the theoretical results and obtained by simulations 

was carried out using a test stand, the block diagram of which is shown in Fig. 6.  

 

Fig. 6. Block diagram of the test measuring circuit. 

The source of a regular part of the input test signal is the programmable function generator 

RIGOL DG1022. This generator, programmed according to relation (2), generates the sum of 

the component Vx and the harmonic interference of the amplitude Vm, the frequency f. The 

random component was formed at the output of the noise generator NC 6102A (white noise in 

band 10 Hz ... 100 kHz). The test signal vin(t) is the sum of the outputs of both generators. The 

voltage is measured by DMM KEYSIGHT 34465A of AC voltage range: VAC,R = 100 mV. The 
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RIGOL DS1052E oscilloscope is used for observation of the input signal. For the acquisition 

of the input observations the NI 9222 with cDAQ-9171 measurement board [23] is used, main 

parameters: 4 diff. channel, input ranges: ±10V, 16 bits, 500 kS/s/ch. To control the 

measurement card and processing registered signal observations the program in LabVIEW 

environment was used.  

Experimental results. In the program controlling the measurement DAQ board, the 

sampling frequency fs=1 kHz and the option to record of N = kn=1000 (n=40, k=25) of the input 

observations (vin,i) were established. The standard deviation value in the noise generator output 

was set to about =n  7.07 mV by RMS indication of DMM. At the output of the function 

generator the interference frequency was set in the range from f1 = 49.5 Hz to f11 = 50.5 Hz 

(kf= 11 values with a step of 0.1 Hz (maximal deviation is ±1.0 %). The ku= 7 values of 

interference amplitude were as following: Vm1 = 10.0 mV; Vm2 = 20 mV; Vm3 = 50.0 mV, 

Vm4 = 100 mV, Vm5 = 200 mV; Vm6 = 500.0 mV, Vm7 = 1000 mV. The values of the HNR are 

the following:  1, 2, 5, 10, 20, 50 and 100.  

This section provides only those experimental results that directly relate to the estimating 

measurement uncertainty. First, the results are given for the estimation by both methods of the 

interference amplitude and the noise standard deviation, and then the standard uncertainty 

values when using uniform and triangular averaging are given. At the same time, a comparison 

of the obtained experimental results with theoretical and simulation results is also given. 

For each interference amplitude (ku = 7) and for each harmonic frequency (kf = 11) the 

Ms = 1000 signal observations (total Mr = kukf = 77 realizations of 1000 observations) were 

registered and processed. Because at the sampling period Ts= 1 ms and the averaging duration 

Tav = 40 ms the number of the averaging observations is n = 40, therefore theoretically it is 

possible to process 1925/ =nMkk suf  series of input observations. However, to ensure the 

randomness condition of the initial phase of interference, each series with n = 40 averaged 

observations should start after the end of the previous at a random moment of time in the range 

of one interference period. Since the sampling period Ts = 1 ms, that is, there are 20 

observations in period, the next averaged series started with a delay by a random number of 

signal observations in the range of 1 to 20. Consequently, the number of observation series 

averaged for each frequency and each interference amplitude was k= 17, that is the total number 

of series tested was Ms = 1309. It is obvious that in this test the interference frequency does not 

change randomly, it takes preset values. For a given k = 17 series and kf = 11 different values 

of interference frequency there are Nu= 17∙11 = 187 estimates of the interference amplitude and 

also estimates of the standard deviation of random component and related to them standard 

uncertainties. 

The experimental uncertainty can be evaluated when the amplitude Vm, exp of harmonic 

interference and the standard deviation sn, exp of random component are determined by two 

methods described above. Fig. 7 shows normalized to given Vm values of the experimentally 

determined interference amplitudes (Vm,exp, 1/Vm, Vm,exp. 2/Vm) and normalized to σn values of the 

experimentally determined noise standard deviations (sn,exp, 1/σn, sn,exp, 2/σn). Comparing the 

graphs in Fig. 4,a with the graphs in Fig. 7,a, which present the results of the Monte Carlo 

simulation, one can see their very good convergence. Similarly, one can notice a very good 

convergence of the dependencies of the estimated values of the noise standard deviation 

determined from experimental studies (Fig. 7,b) and those determined from Monte Carlo 

simulations (Fig. 4,b). 

Experimentally determined and normalized to σn/√n the standard uncertainties uA(V)exp,Un, 1, 

uA(V)exp,Un, 2, uA(V)exp,Tr, 1, uA(V)exp,Tr, 2 when uniform and triangle averaging are shown in Fig. 8. 

Comparing the standard uncertainties of measurement determined by the experimental results 

(Fig. 8) with the results of Monte Carlo simulation (Fig. 5) and with the theoretical values, 
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given in these figures, one can see a good convergence between them. It should be noted that 

some differences between these results are caused by a large difference in the number of 

averages: the number of averaged experimental realizations is only 187, and in the Monte Carlo 

simulations the number of realizations was much higher, namely 105. 

 

Fig. 7. Determined experimentally the interference amplitude Vm,exp normalized to Vm (a) and the noise standard 

deviation sn,exp normalized to σn (b). 

 

Fig. 8. Determined experimentally and normalized to σn/√n standard uncertainties when uniform (a) and triangle 

(b) averaging are used. 

The experimental results also confirmed the effect of reducing the accuracy of uncertainty 

evaluation due to the low accuracy of the estimation of the standard deviation of noise, even 

though the interference component is sufficiently suppressed by, for example, triangular 

averaging. The main reason for this is the lack of knowledge of the actual deviation of the 

interference frequency from the nominal value. 

5. Conclusions 

This paper presents the problems of the type A evaluation of the measurement uncertainty 

with the multiple observations, when the measured signal, in addition to random uncorrelated 

noise, is distorted by power line interference. The standard uncertainty of such measurement 

was investigated when uniform and triangular weighted averaging of the input signal were used. 

The research was carried out theoretically, using the Monte Carlo simulation method, and 

experimentally. 

It was shown that the classical type A method given in GUM [1] does not provide a correct 

evaluation of the uncertainty of such measurement. Namely, calculated according to the GUM, 

the standard uncertainty is overestimated in comparison with the theoretical value by a few to 

several tens times or even more at high levels of interference (when HNR ≈ 100). This problem 

is caused by the different suppression of random noise and power line interference during 

averaging the input observations. The influence of the uncorrelated noise decreases in the first 

approach proportionally to the root of the number of averaged observations. But the influence 

of the power line interference practically does not depend on the number of observations and 

only depends on the used averaging weight function and the instability of interference 

frequency.  
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It was stated that in order to correctly evaluate uncertainty in such measurement both the 

amplitude of the power line component and the standard deviation of the random component 

should be estimated separately. Two simple methods of the separate estimation of these 

components were investigated.  

Assuming that the maximum frequency deviation of the power line interference is |δf| = 1 %, 

it was found that uniform averaging can provide the correct evaluation of measurement 

uncertainty if the HNR ≈≤ 10. This limitation is mainly due to the relatively small interference 

suppression (about only 1/|δf| = 100 times) and also the low accuracy of the estimation of the 

noise standard deviation caused by the instability of interference frequency. 

However, using triangular averaging, due to the large value of interference suppression (not 

less than 104 at |δf| = 1 %), the standard uncertainty can be calculated correctly for the level of 

HNR ≈≤ 20. Although the accuracy of the uncertainty estimation using triangular averaging is 

approximately 2.5 times higher than in the case of uniform averaging, the inaccuracy of the 

uncertainty estimation is significant at HNR > 20. The main factor in this case also is the lack 

of knowledge of the exact interference frequency.  

To improve the evaluation of uncertainty, the actual value of the power line interference 

should be determined. This requires additional research, which will be performed in the next 

stage. 

The results obtained and presented from the simulations and experimental tests have shown 

good accordance with the results of the theoretical analysis. Therefore, they confirmed the 

effectiveness of the proposed solutions of the Type A uncertainty evaluation in the 

measurements in which the measured signal is distorted by both random noise and high-level 

power line interference. 
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