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Abstract 

Aiming at the problems of low estimation accuracy and narrow application range of sensorless control caused by 

inverter nonlinearity and motor parameter error, this paper studies a sensorless control technology of permanent 

magnet synchronous motor based on interactive multi-model extended Kalman filter algorithm to realize high-

precision and high-performance sensorless control of permanent magnet synchronous motor. Firstly, considering 

the influence of inverter nonlinearity, the mathematical model of PMSM including inverter disturbance voltage is 

established. Secondly, an interactive multi-model extended Kalman filter observer is designed based on this model 

to achieve high-precision sensorless control of PMSM. Thirdly, the nonlinear disturbance voltage of the inverter 

is fed back to the control system for dead-time compensation, thus eliminating the voltage disturbance caused by 

the dead-time effect. Finally, simulation experiments and dual-motor towing experiments demonstrate the efficacy 

of the interactive multi-model extended Kalman filter sensorless control algorithm in mitigating the effects of dead 

time. The results indicate that the proposed algorithm exhibits high precision in speed and angle estimation, robust 

anti-disturbance capabilities, and excellent overall performance. 

Keywords: permanent magnet synchronous motor, sensorless control, extended Kalman filter algorithm, inverter 

nonlinearity, dead-time compensation. 

1. Introduction 

The in-wheel motor drive system is composed of in-wheel motors, drive controllers, and 

Hall position sensors. These components are installed in a limited in-wheel space and have 

highly integrated characteristics [1]. The occurrence of road impact, vibration, motor 

temperature rise, inverter dead zone, and other factors will not only result in a variation in the 

sensitivity of the Hall position sensor, temperature drift, and other complications, but also lead 

to an increase in the volume of the motor, system cost, and failure rate [2]. Therefore, it is 

necessary to study the sensorless control of the in-wheel motor and realize the software 

measurement of the rotor position, speed, and other information of the in-wheel motor through 

the control algorithm. This approach is intended to address the limitations of the traditional Hall 

position sensor [3-4]. 

In addition to the salient pole effect method suitable for the zero-low speed stage [5], the 

sensorless control technology also includes the fundamental wave model method suitable for 

the medium-high speed stage [6]. The fundamental wave model of a permanent magnet in-

wheel motor at high speed contains abundant signals such as voltage and current, and the speed 

[7] and position information [8] of the in-wheel motor can be obtained by the fundamental wave 

model method. However, this method is very dependent on the motor speed, and the signal-to-

noise ratio of the back EMF is low at low speeds [9]. Currently, the fundamental wave model 

method mainly includes the electromagnetic force (EMF) method [10], flux linkage estimation 

method [11], state observer method [12], artificial neural network method [13], and so on. 

Zhang et al. [14] propose a discrete rotor position offset compensation method for permanent 
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magnet synchronous motors based on back-EMF, and design an adaptive disturbance observer 

with multi-parameter estimation to improve the compensation accuracy and algorithm 

execution efficiency. However, this method relies too much on the accurate discrete back-EMF 

model. Ye et al. [15] study a sensorless control scheme based on iterative flux sliding mode 

observer (IFSMO), which expands the state equation of the permanent magnet synchronous 

motor with the flux of the permanent magnet synchronous motor, and estimates the speed and 

position of the rotor by using the flux rather than the back electromotive force information. This 

method reduces the chattering in the estimation results, but it takes a lot of time to adjust the 

observer gain. Yang et al. [16] design a speed sensorless control strategy combining an 

improved sliding mode observer (SMO) and a phase-locked loop (PLL). The improved sliding 

mode observer adopts the switching function of the double boundary layer structure to reduce 

the high-frequency vibration and improve the speed tracking performance. However, this 

method has poor tracking performance in the strong disturbance region. Remzi et al. [17] use 

the artificial neural network method to estimate the rotor speed of the brushless DC motor, and 

combine with an extended Kalman filter estimator to achieve a new hybrid speed estimator. 

However, this method is highly dependent on the network model and cannot guarantee the 

accuracy of the actual estimation results. 

In practical applications, the inverter dead time [18] and parameter identification problems 

[19] will have a negative impact on the rotor position estimation, thereby reducing the control 

performance. To achieve high-performance sensorless control considering inverter disturbance 

voltage compensation and parameter identification, this paper proposes a position sensorless 

control algorithm based on the Interactive Multiple Models Extended Kalman Filter (IMM-

EKF). Compared with the existing methods, the main advantage of the IMM-EKF algorithm is 

that it can deal with nonlinear and non-Gaussian systems, and can use multiple different motion 

models to describe the motion of the system, thereby improving the accuracy of the estimation. 

In addition, the IMM-EKF algorithm can also adaptively adjust the weight of each EKF filter 

according to different requirements and actual conditions to adapt to different working 

conditions. 

The principal contributions of this paper are as follows:  

(1) A mathematical model of the permanent magnet synchronous motor (PMSM) including 

the inverter disturbance voltage is established, taking into account the nonlinear factors 

of the inverter.  

(2) A position sensorless control algorithm based on an interacting multiple model extended 

Kalman filter is proposed. This greatly improves the estimation accuracy of the speed and 

angle and the operating range of the sensorless control. 

(3) To validate the proposed interactive multi-model extended Kalman filter position 

sensorless control algorithm, a dual-motor towing test bench is built in the laboratory. 

The speed and angle estimation accuracy of the proposed algorithm are verified by 

simulation experiments, and the anti-disturbance ability and robustness of the algorithm 

under different working conditions are verified by using the built dual-motor towing test 

bench. 

The structure of this paper is as follows. Firstly, in the second section, the influence of 

inverter nonlinearity is analyzed and the mathematical model of a permanent magnet 

synchronous motor with dead-time disturbance voltage is established. In the third section, the 

principle of interacting multiple model algorithm is introduced, and a position sensorless 

control observer based on interacting multiple model extended Kalman filter is designed. In the 

fourth section, the simulation experiment based on Matlab and the physical bench experiment 

of double motor towing is designed to verify the effectiveness of the interactive multi-model 

extended Kalman filter sensorless control algorithm. The fifth section is the conclusion of this 

paper. 
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2. Mathematical model of PMSM considering inverter nonlinearity 

The average voltage of each phase in a switching cycle Ts should be equal to the reference 

voltage, as illustrated in Fig. 1(a). The ideal voltage value is no longer consistent with the actual 

voltage value in the presence of the dead zone effect, as depicted in Fig. 1(b) [20].  

     

           (a) Ideal reference voltage                                                 (b) Actual reference voltage 

Fig. 1. Schematic diagram of ideal and actual reference voltages 

At this present time, the discrepancy between the reference value of the a-phase voltage and 

the actual value is as follows: 

 , sgn( )a err dead au V i=   (1) 
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In the formula, Vdead represents the voltage drop resulting from VSI nonlinearity, Tdead 

denotes the dead time, Ton and Toff are the turn-on and turn-off delay of the switching tube, 

respectively, Vsat and Vd are the voltage drop of the switching tube and the freewheeling diode, 

respectively, Vdc is the bus voltage, sgn(·) is the sign function. 

Due to the nonlinear characteristics of the inverter output voltage, including the dead-time 

effect, there is an error between the reference values ud
* and uq

* and the actual values ud and uq. 

This voltage error is regarded as a disturbance in the control system. From the dead-time voltage 

model, which considers the nonlinear factors of the inverter, the voltage equation of the 

permanent magnet synchronous motor is: 
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Where id and iq are d-axis and q-axis stator currents respectively, ud and uq are d and q-axis 

stator voltages, respectively. e is the electromechanical angular velocity, Rs, Ls, andΨs are the 

stator resistance, inductance, and rotor flux of the motor, respectively. Vdead represents the 

disturbance voltage, taking into account the nonlinear factors of the inverter. Dd and Dq are 

interval piecewise functions about e, ud* and uq* are the reference values of the output voltage 

of the inverter. 

The presence of the disturbance voltage Vdead has the potential to impact the accuracy of the 

sensorless control algorithm [21]. To enhance the precision of the motor sensorless control, it 

is essential to accurately estimate and compensate for the Vdead value. 
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3. Sensorless control observer design of PMSM based on IMM-EKF 

3.1. Principle of IMM-EKF algorithm 

The IMM algorithm is a multi-model tracking algorithm based on multiple filters, which can 

also be referred to as a soft switching algorithm. The flow chart of the IMM algorithm is shown 

in Fig. 2. The detailed calculation process of the IMM algorithm is usually recursively carried 

out in four steps, as follows: 

 

Fig. 2. The flow chart of IMM algorithm 

Step 1: Interaction of input model 
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Where [ ]

1| 1

j

k k− −x and
[ ]

1| 1

j

k k− −P are the initial mixed state estimation and initial mixed covariance 

estimation of the current cycle of model j, respectively. [ ]

1| 1
ˆ i

k k− −x is the state estimation of any 

model system estimated at the previous time. [ ]

1 1

i j

k k

→

− −
μ

∣
is the mixing probability of the previous 

time, that is, the estimation of the previous cycle is given the weight of each filter at the 

beginning of the current cycle. p[i→j]is the mixing probability of the transition from model i to 

model j, [ ]

1

i

k−μ is the probability of model i at time k-1, and 
jc is the normalized constant of the 
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predicted probability of model j, [i→j] represents the transition from model i to model j,   

represents the initial mixing estimate, and ̂ represents the estimate. 

 

Step 2: Filtering of the filter 

In this part, this paper selects the EKF filter to expand the design of the filtering link. Firstly, 

the initial mixed state estimate [ ]

1| 1

j

k k− −x , the initial mixed covariance estimate
[ ]

1| 1

j

k k− −P , and the 

measurement equation [ ]j

ky of the current cycle model j obtained by step 1 are used to obtain the 

new current predicted state estimate and the filter covariance according to the EKF filtering 

process. Secondly, the EKF filtering process can predict and update the IMM-EKF algorithm 

according to the framework of the Kalman filter algorithm, and calculate the state estimation 

and uncertainty. 

Specifically, taking model j as an example, the state estimation and uncertainty calculation 

formulas in the prediction stage are as follows: 
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Where [ ]

1

j

k−F  is the Jacobian matrix of ( , )f x u  at x̂ , and [ ]j

kQ  is the process noise covariance 

matrix of model j. 

The formula for state estimation and uncertainty calculation in the update phase is as follows: 
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Where [ ]j

kK is the Kalman gain coefficient of model j, [ ]j

kG is the Jacobian matrix of [ ] ( )jg x at
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ky is the current observation 

data of model j, and [ ]j
I is the unit matrix. 

 

Step 3: Update of model probability 

Taking model j as an example, the update of model probability [ ]j

kμ in the IMM algorithm 

flow usually adopts the following formula. 
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Where c represents the normalized coefficient, and [ ]j

kΛ represents the maximum likelihood 

function.  

 

Step 4: Output interaction 

The final step of the IMM algorithm is the interaction of the output. In simple terms, the 

estimated values of the filtering results of all the models obtained in the previous three steps 

are weighted by the model probability function to obtain the total state estimation value 
|

ˆ
k kx

and covariance estimation value 
|k kP of the current cycle. Specifically, the total state estimation 

|
ˆ

k kx and the covariance estimation 
|k kP are calculated as follows: 
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At this juncture, the existing recursive loop calculation is concluded. The total state 

estimation value
|

ˆ
k kx and the covariance estimation value

|k kP of the current loop will be 

calculated as the initial value of input interaction in the subsequent loop. This allows for the 

continuous adjustment of the model's weight by the uncertainty of the current observation and 

state estimation, thereby facilitating more precise state estimation and prediction. 

3.2. Sensorless control observer design based on IMM-EKF algorithm 

The algorithmic flow of IMM-EKF has been previously detailed in the preceding section. It 

is no longer described too much here. The core idea of the IMM-EKF algorithm is to combine 

multiple models (linear or nonlinear) to form a hybrid model and use the weighted average 

method to fuse them to achieve better estimation results. Among them, the input model 

interaction and new data fusion are the main differences between the IMM-EKF algorithm and 

the single model filter algorithm. The main advantage of the IMM-EKF algorithm is that it can 

deal with non-linear, non-Gaussian systems, and can use multiple different motion models to 

describe the motion of the system, thereby improving the accuracy of the estimation. In 

addition, the IMM-EKF algorithm can also adaptively adjust the weight of each EKF filter 

according to different requirements and actual conditions to adapt to different working 

conditions. 

As previously stated, the nonlinear nature of the motor system necessitates linearization. The 

processed system state equation is as follows: 
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Where both qk and rk are random zero-mean Gaussian white noise introduced by discretization. 

The former represents the system noise and is related to the accuracy of the system. The latter 

represents the measurement noise and is related to the accuracy of the controller measurement 

data. 

The state variable xk and the state space transformation equation F(xk,uk) are shown as 

follows. 
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Four models are selected to describe the motion state of sensorless control considering 

parameter identification and inverter nonlinearity. The state variables of each model are as 

follows: 
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Each sub-model selected in this way only identifies one parameter while estimating the 

motor speed, which satisfies the observability discrimination and can ensure the observability 

and reliability of the estimated parameters. 

For each submodel: 
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Where Q and R are the noise covariance matrix of the system noise of model j and the 

covariance matrix of the measurement noise, respectively, which are usually selected according 

to the model noise and debugging experience. 

4. Simulation analysis and experimental verification 

4.1. Simulation analysis 

To verify the feasibility and effectiveness of the proposed algorithm, the simulation model 

of this paper is built in MATLAB/SIMULINK based on the accurate modeling model of vector 

control and the principle block diagram of the IMM-EKF algorithm in Fig. 2. Some of the 

module parameters of the model are shown in Table 1.  
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Table 1. Motor and power device parameters 

Category Parameter name Parameter value 

Electrical machine 

Rated power, P 0.75 kW 

Rated voltage, Udc 310 V 

Rated current, I 7.2 A 

Rated speed, Nr 3000 r/min 

Rated torque, T 2.4 Nm 

Line back electromotive force, E 49.3% V/(103r·min-1) 

Rotor inertia, J 1.410% (kg·m2·10-4) 

Stator resistance, R 1.17610% Ω 

Inductance, L 9.510% mH 

Permanent magnet flux, Ψf 0.0485 wb 

Pole pairs, Np 5 

Power device 

Turn-off delay time, Toff 40 ns(25℃) 

Turn-on delay time, Ton 35 ns(25℃) 

Switching frequency, TPWM 10 kHz 

Dead time, Tdead 2 s 

 

To verify the feasibility and effectiveness of the sensorless control algorithm with 

compensation proposed in this paper, a 20% rated load is applied at 500 r/min and 1000 r/min, 

and the simulation analysis of compensation effect and sensorless estimation is carried out. The 

specific analysis results are as follows: 

By comparing Fig. 3(a), (c), (e) and (b), (d), (f), it can be found that compared with Fig. 3(a), 

the stator current waveform of Fig. 3(b) with the proposed dead-time compensation algorithm 

is significantly improved, and the current clamping phenomenon and current waveform 

distortion caused by inverter nonlinearity are significantly reduced. Through the frequency 

domain analysis of the current waveforms of Fig. 3(a) and (b), Fig. 3(c), (e) and (d), (f) can be 

obtained. By comparing the frequency domain analysis of the current before and after 

compensation, it can be clearly found that the amplitude of the 5th and 7th harmonic 

components in the a-phase current and the amplitude of the 6th harmonic component in the dq-

axis current are greatly reduced. The result is that the sinusoidality of the circuit waveform 

becomes better, and the current improvement after compensation is more obvious. 

In terms of sensorless control performance, as shown in Fig. 4(a)-(h), the speed and angle 

estimation analysis of the proposed sensorless algorithm under 500 r/min and 20% load are 

performed before and after compensation, respectively. Observing the group diagram after 

compensation, it can be found that the estimated speed and estimated angle after compensation 

not only converge to the actual value, but also the estimated speed error is about 20 r/min. At 

this time, the relative estimation error of the speed is about 4%, and the estimation accuracy is 

improved by about 60% compared with that before compensation.  

The simulation analysis under high speed and light load conditions is shown in Fig.5 and 

Fig.6, which are the current and current frequency domain analysis group diagram before and 

after compensation under 1000 r/min and 20% load, and the estimated speed and estimated 

angle analysis group diagram before and after compensation. It can be seen from Fig.5 and 

Fig.6 that the sinusoidal characteristics of the current waveform before and after compensation 

are greatly improved, and the amplitude of the current harmonic component caused by the 

nonlinearity of the inverter is also reduced accordingly. The proposed algorithm also has a good 

compensation effect under high speed and light load. Under the condition of high speed and 

light load, the speed estimation error and angle estimation error are also much smaller than 

those before compensation. The simulation results show that the proposed algorithm has good 

compensation and estimation ability under this condition. 
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(a) Current waveform before compensation                   (b) Current waveform after compensation 

 

 (c) a phase current before compensation                        (d) a phase current after compensation 

 

 (e) dq axis current before compensation                          (f) dq axis current after compensation 

Fig. 3. Current waveform and current frequency domain analysis before and after compensation at 500 r/min 
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(a) Speed waveform before compensation                       (b) Speed waveform after compensation 

 

 

(c) Speed error waveform before compensation             (d) Speed error waveform after compensation 

 

 

(e) Angle waveform before compensation                        (f) Angle waveform after compensation 

 

  

(g) Angle error waveform before compensation              (h) Angle error waveform after compensation 

Fig. 4. Analysis of speed and angle before and after compensation at 500 r/min 
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(a) Current waveform before compensation                    (b) Current waveform after compensation 

  

 (c) a phase current before compensation                          (d) a phase current after compensation 

 

 (e) dq axis current before compensation                          (f) dq axis current after compensation 

Fig. 5. Current waveform and current frequency domain analysis before and after compensation at 1000 r/min 
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 (a) Speed waveform before compensation                        (b) Speed waveform after compensation 

 

  (c) Speed error waveform before compensation             (d) Speed error waveform after compensation 

 

(e) Angle waveform before compensation                        (f) Angle waveform after compensation 

  

     (g) Angle error waveform before compensation              (h) Angle error waveform after compensation 

Fig. 6. Analysis of speed and angle before and after compensation at 1000 r/min 
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4.2. Experimental verification 

The experiment is carried out on the two-motor dragging test bench shown in Fig. 7. The 

experimental motor parameters used in the experiment are consistent with the motor parameters 

used in the simulation analysis, as shown in Table 1.  

 

Fig. 7. The physical diagram of the motor experimental bench 

Fig. 8 shows the hardware frame structure diagram of the dual-motor dragging test bench. 

The driving circuit board is a high-voltage component composed of a rectifier circuit, an 

inverter circuit, and a current and voltage sampling circuit. The control board is in the low-

voltage part. This part mainly includes the main control chip, reset circuit, crystal oscillator 

circuit, etc. The main control part selects the DSP chip of TMS320F28335 as the main 

computing CPU. Its operation speed is as high as 150 MHz, and it has an FPU floating-point 

operation unit, which is responsible for signal acquisition, various algorithm implementations, 

and PWM signal output. 

 

Fig. 8.  Block diagram of the test bench hardware 

In this paper, the following methods are used to verify the proposed control algorithm. In 

the CCS compilation environment, the drive system runs the IMM-EKF algorithm scheme. 

During the execution of the scheme, the program can also be uploaded to the PC using a serial 

port, and communicate with the PC to send information such as current and speed. In the loading 
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system, the torque output program allows the PC to select the dynamic and static load torque 

curves and input them to the loading control system through a serial interface to apply the load.  

As shown in Fig. 9 and Fig. 10, the current waveform diagram and the estimated speed and 

estimated angle analysis diagram are shown under the acceleration and deceleration conditions 

of the initial speed of 500 r/min, 20% rated load constant speed load running for 0.3 s, the 

sudden speed to 2000 r/min and then reduced to 500 r/min. Fig. 9 shows the current waveform 

under the acceleration and deceleration conditions. At this time, the burrs in the dq axis except 

for noise are reduced, and the waveform is smoother under a steady state. The sinusoidal 

characteristics of the a-phase current waveform are better. The zero-point clamping 

phenomenon and current distortion caused by the dead zone are close to the current waveform 

after simulation improvement. According to the comprehensive observation of Fig. 10, it can 

be found that the proposed sensorless control algorithm converges well with the reference value 

in estimating the speed and angle, and fluctuates up and down near it. At the steady-state speed 

of 500 r/min, the estimation error is about 25 r/min, and the relative estimation error of the 

speed is about 5%. At 2000 r/min steady-state speed, the estimation error is about 10 r/min, and 

the relative estimation error of speed is about 0.5%. When the speed changes abruptly, the 

estimated speed still tracks the actual value well, and the estimated speed error is very small 

during acceleration and deceleration. Therefore, it can be proved that the proposed algorithm 

has better anti-speed disturbance ability. 

 

    Fig. 9. Variable speed stator current waveforms 

 

    (a) Estimate speed waveform                                      (b) Estimate the speed error waveform 

 

   (c) Estimate angle waveform                                           (d) Estimate angle error waveform 

Fig. 10. Estimated speed and angle analysis under acceleration and deceleration conditions 

As shown in Fig. 11 and Fig. 12, the current waveform diagram and the estimated speed and 

angle analysis diagram under the loading and unloading conditions of the initial speed of 500 

r/min, 20% rated load constant speed load operation of 0.3 s, sudden load of 80%, and then 

reduced to 20% rated load. Since the current frequency domain analysis cannot be carried out 

under unsteady conditions, only the current waveform and the estimated speed and estimated 
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angle are analyzed and displayed under this condition. Fig. 11 shows the current waveform 

under the loading and unloading conditions. At this time, the burrs in the dq axis except for 

noise are reduced, the waveform is smoother under a steady state, the sine of the a-phase current 

waveform is better, and the zero-point clamping phenomenon and current distortion caused by 

the dead zone are improved. It can be seen from Fig. 12 that the proposed sensorless control 

algorithm converges well to the reference value in the estimated speed and estimated angle, and 

fluctuates up and down near it. The speed estimation error is about 25 r/min under the steady 

state of 500 r/min low load, and the relative estimation error is about 5 %. Under the steady 

state of 500 r/min low speed and high load, the speed estimation error is reduced by about 15 

r/min, and the relative error is about 3%. The identification accuracy is superior under high load 

steady state. Under low load steady state and high load steady state, the angle estimation error 

does not exceed 0.02 rad. When the torque changes abruptly, the estimated speed and estimated 

angle still track the actual value well, and the estimated speed error and estimated angle error 

are very small during loading and unloading. Therefore, it can be proved that the proposed 

algorithm has better anti-load disturbance ability. 

 

Fig. 11. Variable load stator current waveforms 

 

    (a) Estimate speed waveform                                          (b) Estimate the speed error waveform 

 

(c) Estimate angle waveform                                           (d) Estimate angle error waveform 

Fig. 12. Estimated speed and angle analysis under variable torque conditions 

5. Conclusions 

In this paper, an interactive multi-model extended Kalman filter position sensorless control 

algorithm is proposed. The algorithm exhibits high speed and angle identification accuracy, a 

smooth current waveform, and robust performance. In the face of variable speed, the estimated 

speed and estimated angle have small fluctuation, fast convergence speed, and good anti-

disturbance ability. This paper is limited in that it does not address the estimation problem at 
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zero speed. In future work, the switching strategy for zero-low speed and medium-high speed 

will be studied to realize composite sensorless control across the full speed range. 
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