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Abstract 

An eddy-current method of simultaneous indirect measurements of the distributions of electrical conductivity and 

magnetic permeability in the subsurface zone of planar objects is proposed, based on a surrogate optimization 

algorithm using neural network metamodels of reduced dimensionality. Reduction of their dimensions and the 

space for finding an extremum is performed using the Kernel PCA method, which involves nonlinear 

transformations as a result of computational operations with the Gaussian kernel function. The construction of 

metamodels involved the use of deep learning methods. The peculiarities of metamodels include the performance 

of two functions, in particular, providing low-cost efficient computing and accumulating additional apriori 

information about the measurement process, which is digitally entered into the design of experiment determining 

the training samples for training of deep neural networks. Taken as a whole, it made it possible to achieve higher 

accuracy characteristics of indirect measurements. 

Keywords: Indirect measurements, electrophysical property profiles, surrogate optimization, reduced dimension 

metamodel. 

1. Introduction 

Eddy current technology is often used to indirectly measure the electrophysical properties of 

conductive materials [1, 2, 3]. Determination of the distributions of electrical conductivity (EC) 

and magnetic permeability (MP) in the subsurface layers of a material provides a significant 

amount of information about the features of the microstructural state of the test objects (TO). 

Thus, this makes it possible to monitor the quality of various technological operations in the 

production process and correct them throughout the entire manufacturing cycle of industrial 

products. The structural sensitivity of the EC and MP profiles is an important factor in the 

considerable interest of researchers in improving methods for selecting such information from 

the results of direct measurements of EMF by eddy current probes (ECPs) during non-

destructive testing of objects, since it is impossible to obtain it directly. The desired subsurface 

distributions of the electrophysical properties of materials depend on the parameters of the 

primary probes used, the geometry of the TO, and the laws of physics, which establish complex 

relationships with the measured values of the ECP, i.e., the amplitude and phase of the EMF. 

The above methods are computational procedures that, as a result of processing the data 

obtained by the probes according to certain algorithms, lead to the establishment of the required 

profiles of the electrophysical properties of materials with a certain accuracy. It is desirable to 

simultaneously determine both profiles without application of technically complex measuring 

equipment, i.e., at one fixed frequency of excitation of the electromagnetic field of the object 

being sensed. For mathematical reasons, these problems belong to the class of inverse problems, 

the solution of which causes significant difficulties due to the peculiarities of their belonging 
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to the incorrectly posed ones [4]. Researchers propose various theoretical approaches and 

computational techniques to improve methods for determining the profiles of EC and MP, in 

particular, those mentioned in modern publications [5-10]. In articles [11, 12], the authors 

provide a critical analysis of the methods proposed in them and a fairly detailed generalization 

of the observed trends in their development, as well as further directions for their improvement. 

In particular, the authors point out the prospects of combining the advantages of optimization 

and data-driven methods in one computational algorithm, which was implemented while using 

a surrogate optimization method [13] with reduced-dimensional metamodels implemented on 

deep MLP-neural networks. It should be noted that this involved a preliminary reduction of the 

dimensionality of the metamodels and, accordingly, the search space of the optimization 

algorithm using linear transformations with the principal components method of PCA. This 

made it possible to significantly reduce the requirements for computational and time resources 

for solving these problems, since without this technique they required many times more space, 

while providing even worse accuracy in determining the profiles. 

In addition, when solving inverse problems, the involvement of additional apriori 

information about the course of the profile measurement process in the computation is of 

significant, if not decisive, importance, which makes it possible to obtain a more accurate 

solution to the problem. Under conditions of solution instability, which is typical for inverse 

problems, ignoring this rule does not allow us to localize the desired solution in conditions of 

its nonuniqueness, and therefore leads to a loss of accuracy. From now on, we will consider 

apriori information to be information that is obtained regardless of the measurement results. 

Usually, to introduce apriori information into the computational process, a mathematical model 

is supplemented with appropriate additional relations and connections that the solution must 

satisfy and that describe its fine structure, highlighting its physical essence. When solving any 

inverse problem, such individual apriori information always exists. In the mentioned studies of 

the authors [11, 12], a different form of apriori information was used from the traditional one. 

Its input into neural network surrogate models, i.e., metamodels, was performed digitally, due 

to homogeneous multifactorial computerized designs of experiments (DOEs) [14, 15]. It is the 

digital data at the points the design of experiment, together with the values of the ECP EMF 

calculated therein, that are used as training samples for training deep neural networks and allow 

us to establish, due to their unique generalizing properties, subtle, complex, and significantly 

nonlinear patterns of ECP signal formation hidden in the data. Apriori information can be 

complete or incomplete, which is also acceptable, simplifying the preparation of metamodels. 

An increase in its volume leads to an increase in the transparency of the physics of the 

measurement process, thus surrogate models will provide better opportunities for solving the 

inverse problem. 

Summarizing, it should be noted that the literature review of modern research on the 

analyzed topic did not reveal the existence of effective methods for solving the problems of 

indirect measurements of EC and MP profiles, taking into account the available apriori 

knowledge of the desired solutions in this specific form. It is also advisable to conduct research 

aimed at further reduction of the dimensions of surrogate models, which is promising with the 

use of nonlinear transformations with much greater possibilities for this. 

Therefore, the aim of the paper is to develop a method for indirect simultaneous eddy current 

measurements of subsurface profiles of electrical conductivity and magnetic permeability of 

planar objects using a surrogate optimization algorithm and neural network metamodels of the 

dimensionality reduced by nonlinear Kernel PCA transformations and accumulating additional 

apriori knowledge about the desired solution, increasing the completeness of such information, 

which harmonizes the combination of a full-scale experiment, direct modeling and inverse part 

to achieve high accuracy characteristics. 
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2. Research methodology 

Measurements of the EC and MP profiles are performed in stages according to the scheme 

shown in Fig. 1. The profiles are continuous along the thickness of the material, but we will 

consider them discretized in the following as a result of a piecewise constant approximation. A 

solution to the problem may be done in the form of a vector, as shown in Fig. 1. 

 

Fig. 1. The main stages of the technique of indirect eddy current measurements of the subsurface profiles of EC 

and MP. 

A detailed description of the stages of measuring the electrophysical properties of the TO 

has already been given by the authors in previous published studies, in particular [11, 12], so 

their essence is briefly recalled here. However, this article, offers certain changes in the content 

of some stages, the description of which is given more attention to in the future. 

Hence, firstly, the EMF emes is measured by a surface ECP located above the planar TO; 

secondly, the obtained measurement result in the form of the EMF amplitude and phase is sent 

for processing to the surrogate optimization unit, where the metaheuristic algorithm of global 

search for an extremum, using a fitness function with a component in the form of a metamodel, 

minimizes the difference between the measured and theoretical values of the EMF by varying 

the values of electrophysical parameters and finds the desired profiles in a reduced space; third, 

a metamodel is preliminarily created to be used at the second stage of calculations, which is 

actually a neural network solution to the direct problem of determining the theoretical model 

value of the EMF, but it is characterized by a high computational efficiency and low resource 

consumption. In contrast to the solution scheme given in [11], which illustrates actions in a full-

factor space, i.e., uses a full-dimensional metamodel, in this case the creation of the metamodel 

and the optimization search for profiles are performed in a space with a nonlinearly reduced 

dimension. It significantly simplifies the structure of the neural network, i.e., the calculation of 

the fitness function within the optimization algorithm is performed faster, results in a more 

accurate search for the extremum due to a reduction in the number of variables in the new space. 

However, this approach to the final determination of the EC and MP profiles also involves the 
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procedure of nonlinear backprojection into the original full-factor space. Fourthly, at the 

beginning of the metamodel construction, a computer homogeneous design of experiment is 

formed, the main task of which is to create the most favorable conditions for the most accurate 

approximation of the multidimensional response surface in the general case, which is 

determined by solving a computationally expensive direct magnetodynamic problem according 

to the Uzal-Cheng-Dodd-Deeds model [1, 16, 17, 18], and accumulating additional apriori 

information about the measurement process provided in a digital form to increase its 

completeness. Moreover, the completeness of additional apriori knowledge can be adjusted in 

both directions, guided by the obtained accuracy of the profile measurement result. Based on 

the design of experiment and using the Uzal-Cheng-Dodd-Deeds eddy current measurement 

process model, a dataset is generated that can potentially be used as a training set for training 

metamodels on deep neural networks in the full-factor search space. However, to move to the 

reduced space, the data set is projected by nonlinear kernel Gaussian transformations using 

Kernel PCA techniques into another auxiliary space of a much higher dimensionality than the 

primary one, where it can be projected by linear PCA transformations into another coordinate 

system of a lower dimensionality than the primary one. Moreover, such data manipulations lose 

a fairly small amount of original information inherent in the full-factor space, and its volume is 

also adjustable. As a result of these actions, we obtain a vector of the desired subsurface profiles 

of the EC and MP in the real full-factor primary space. 

Solving the inverse problem, as noted above, requires an efficient solution of the direct 

problem. The analytical solution of the magnetodynamic direct problem is further represented 

by the well-known Uzal-Cheng-Dodd-Deeds model in the matrix formulation in the modified 

Theodoulidis [19] form, which is obtained under the following assumptions. The 

electromagnetic field is excited by a cylindrical coil with a rectangular cross-section of finite 

dimensions and a sinusoidal current I varying with an angular frequency ω. The field is quasi-

stationary, i.e., wave processes in the air are neglected. The bias currents in the TO are ignored 

due to their negligible values compared to the conduction currents. The excitation coil is 

characterized by a homogeneous current density across the cross-section i0 and has a number 

of turns W. The TO is assumed to be conditionally multilayer with L of their discrete readings. 

The laws of distribution of the electrophysical parameters of the TO are considered to be known 

and previously determined experimentally [16]. The mathematical model was created under the 

assumptions of linearity, isotropy, and homogeneity of the media. The chosen model is very 

convenient because of its versatility due to the suitability of representing the TO with an 

arbitrary number of conditional layers. The geometric model of the direct problem is shown in 

Fig. 2 [20]. 

In all regions denoted by Fig. 2, the magnetic vector potential A excited by a point source is 

described by the Helmholtz partial differential equation written in the cylindrical coordinate 

system, which is supplemented by boundary conditions: 
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where ; = -1   2
r 0k = j ω μ μ σ j ; δ - is the Dirac delta-function; r0, z0 - are the coordinates of 

location of the point source of the electromagnetic field, m; µ0 = 4·π·10-7 is the magnetic 

constant, H/m. 
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Fig. 2. Geometric model of the direct problem. 

Its solution makes it possible to calculate the theoretical model value of the EMF induced in 

the pick-up coil of the ECP with a radius r and the number of turns wmes by the formula: 
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A0 is the magnetic vector potential in the air gap below the excitation coil; P is an observation 

point with coordinates (r, z) belonging to the contour Lc of the ECP measuring coil; V is a 

matrix with elements V11, V21; T() is a matrix with elements T11(), T12(), T21(), T22(); Jm() is 

cylindrical Bessel functions of the first kind of the m-th order; (r2 - r1) is the cross-sectional 

width of the ECP excitation coil, m; (z2 - z1) is the height of the cross-section of the ECP 

excitation coil, m; σt and µt are the electrophysical properties of the t-th conditional layer of the 

material. 

The adequacy of computer calculations according to formula (3) was proved by comparing 

with the experimental data given in [21] and the calculated ones obtained using FEM in the 

COMSOL Multiphysics (AC/DC Module) environment [20] and analytically for two-layer TOs 

[22].  

The problem is that the calculations based on model (3) are resource-intensive, which does 

not allow its use as part of the fitness function of the optimization algorithm. An effective 
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solution to the direct problem requires the creation of a substitute model, i.e., a metamodel or a 

model on a model without these drawbacks. The first step in creating a metamodel is to create 

the design of experiment with high homogeneity both in general and, most importantly, in all 

two-dimensional projections. The homogeneous quasi-design was created on modified Sobol`s 

LPτ-sequences which ensured exactly these properties. More details about the features of the 

design generation can be found in [23]. The design is made for the full factor space, taking into 

account the need to introduce additional apriori information. The design is a table of size DN, 

where D is the number of rows in the table, which is equal to the sum of the number of main 

and additional factors determining the apriori information; N is the number of samples in the 

training set. However, according to the above calculation scheme, it must be transformed into 

a reduced space using Kernel PCA techniques [24]. 

Therefore, we applied a nonlinear projection of the primary data into the auxiliary space 

using the Gaussian kernel function: 
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where θ is a free parameter subject to rational selection; ( ) ( )
,

i j
x x  is vector-columns of 

observations of dimension D. 

The result of the transformation is a Kernel Matrix K of dimension NN, i.e., a similarity 

matrix, where each element is equal to the kernel value between the i-th and j-th observation in 

the original data.  

The structure of this matrix is shown below: 

   

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , ,

N

N

N N N N

 
 
 
 

=
 
 
 
  

  

  

  

x x x x x x

x x x x x x
K

x x x x x x

.   (5) 

A symmetric Gramm matrix is obtained by centering of a kernel matrix: 

   = - -N N N N+K K 1 K K 1 1 K 1 ,   (6) 

where 
N1  is a matrix of size NN with elements equal to 1/N. 

The centered matrix is then subjected to a standard linear PCA transformation using the 

singular value decomposition SVD: 
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K U Σ U ,   (7) 
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( )1, ... , Ndiag λ λ=Σ  is a diagonal matrix containing singular numbers whose squares are its 

eigenvalues.  

The first M eigenvectors, selected by ranking in the direction of decreasing eigenvalues 

1 2 ... 0Nλ λ λ    , collect a significant portion of the total variance of the data, while ensuring 

a negligible loss of information. Thus, such calculations determine the principal components 

associated with the corresponding M eigenvectors. It is advisable to choose a much smaller M 

than the dimension of the primary space D. The data of the full-factor design are projected by 
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linear transformations onto the identified principal components, leading to a reduction in 

dimensionality: 

   = T
Z U K ,   (8) 

where T
U  is a reduced matrix of right eigenvectors of dimension NM. 

Therefore, the next step is to build a metamodel of the reduced dimensionality of the 

simplified structure using deep learning. Information on the peculiarities of creating such a 

metamodel has already been given by the authors in publications [11, 12], where it can be found. 

We only note that in fact, not one but two real-valued neural network metamodels are created 

for the real and imaginary parts of the EMF, respectively, and not for its value. Otherwise, we 

would have to create a complex-valued neural network. 

The last stage of computation involves performing surrogate optimization. Important at this 

stage is the use of a global extremum search algorithm [25, 26], which is fundamental for 

solving the inverse problem to prevent getting stuck in local minimums of the characteristic 

complex multidimensional response surface in such cases. To find the extremum of the fitness 

function in these studies, we used a stochastic metaheuristic hybrid particle swarm global 

optimization algorithm PSO with evolutionary formation of the swarm composition, which is a 

low-level hybridization with the genetic algorithm GA. It is characterized by all the properties 

necessary to solve the inverse problem [27]. The fitness-function was compiled using the least-

squares method and minimized by comparing the theoretical modeled ECP signal with the 

experimental measured value when varying the profiles of the EC and MP.  
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where (σ, µ)T is the vector of physical properties of the TO that determines the desired profiles; 

metamode  is the probe EMF calculated by the reduced dimension metamodel. 

The projection into the original space of the solution found by optimization for the Gaussian 

kernel function chosen in this study is performed by the inverse transformation due to the 

implementation of the iterative process [28]. The corresponding reconstruction of pre-images 

for Kernel PCA is implemented by the formula: 
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z  is initial values of the 

vector to initiate the iteration process; *
x  is a vector obtained in the reduced space as a result 

of optimization; p is the number of the iteration cycle. 

The successful execution of the iteration process depends on the successful selection of the 

vector, which requires careful selection. 

Additionally, we note that the mathematical apparatus for solving optimization problems 

using reduced order surrogate models with all components in the whole, probating by the 

authors in [29], demonstrated a fairly high computational efficiency in verifying adequacy on 

hypothetical test multidimensional mathematical functions with complex topography. 

Consequently, it can be successfully used to solve inverse measurement problems of 

determining the material properties profiles of test objects. 

Finally, we note that in addition to the main parameters that determine the profiles, the design 

of experiment additionally included apriori information on EMF measurements by coils with 

different radii r, which provides more efficient information selection than probing of the TO at 

different excitation frequencies [30, 31, 32], although this practice is more common [7, 9, 10]. 
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3. Numerical experiments 

Having considered the theoretical foundations, let us proceed to numerical experiments by 

means of the example, demonstrating the proposed research methodology step by step. Firstly, 

it is advisable to consider the peculiarities of creating metamodels where the modeling took 

into account two main factors of the electrophysical parameters of the TO and additional apriori 

information on a series of measurements by a coil with different radii r. Then, a homogeneous 

quasi-experiment design can be implemented on any combination of LPτ-sequences with the 

best WSCD values, determined in [33] for the three-factor DOE with subsequent scaling to the 

required dimensions of the real factor space. Therefore, for example, we used the combination 

ξ1, ξ6, ξ14, with the weighted symmetrized centered divergence index WSCD=8.22856·10-7 for 

the number of DOE points N=2820. This number of points is sufficient for training deep neural 

networks with satisfactory accuracy. The table of this DOE on a unit scale is given in [12]. The 

peculiarities of obtaining of discretized profiles, taking into account the effect of controlled and 

uncontrolled factors on the TO, are discussed in detail by the authors in [12], so following the 

recommendations given there for numerical experiments, we set the values of electrophysical 

properties on the surface and at the depth of the L-th conditional layer of the TO as follows: σL 

= 2106 S/m, σ1 = 9.2 106 S/m and µL = 10, µ1 = 29.78. Within these limits, the profiles change 

according to the previously known [16] distribution laws, namely, for example, EC - 

"exponential", MP - "gaussian", and the number of conditional layers is taken to be L=60. Then, 

in particular, taking into account 15% variation of these parameters [12], we obtain σ1 = 

(9.2±1.38) 106 S/m, and MP - µ1 = 29.78±5.25, with σL and µL remaining constant at the depth 

of the material for any sample profiles. 

As a result, we obtained a data set in the full factor space, which is shown in Table 1. The 

next stage involves calculating the model EMF value of the emod probe at the DOE points using 

a high-cost magnetodynamic model (3) with the following initial data: for the excitation coil 

f=2 kHz, r1=32 mm, r2=50 mm, z1=1 mm, z2=18 mm, I=1 A, W=100; for the pick-up coil r=6, 

..., 46 mm, z=1 mm, wmes=50. Some numerical values of this calculation are shown in Table 1. 

Table 1. Array of initial data in the full factor space dimension 2820(2·L+1). 

P
ro

fi
le

s 

P
ar

am
et

er
 Numbers of the conditional layers r [mm] ECP signal 

1 2 … 59 60 Re(emod) Im(emod) 

1 
µ 29.750 29.663 … 10.115 10.096 

26 -0.8011 1.593 
σ [S/m] 8834221 8486281 … 2092548 2073403 

2 
µ 27.129 27.054 … 10.0994 10.083 

36 -1.505 3.675 
σ [S/m] 9490569 9110618 … 2128662 2107756 

… … … … … … … … … … 

2819 
µ 32.405 32.306 … 10.130 10.109 

28.27 -0.948 -2.013 
σ [S/m] 9616850 9230741 … 2135611 2114366 

2820 
µ 25.852 25.782 … 10.092 10.077 

43.2 -1.822 -4.528 
σ [S/m] 9288676 8918572 … 2117553 2097189 

Next, we applied the Kernel PCA method to reduce the dimensionality of the search space 

[28]. As a result of a number of mathematical transformations, the first 24 eigenvectors with 

singular numbers greater than 1 were selected (Fig. 3). 
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Fig. 3. Diagram of the singular numbers of the Gramm matrix. 

Thus, we obtained a data matrix that was projected into a reduced space, the elements of 

which are shown in Table 2, which also indicates the samples that will be used as training, 

cross-validation, and test samples in the next stage of metamodel construction. And also those 

that did not participate in the training and were used later as synthesized samples to verify the 

reliability of the solution to the inverse profile reconstruction problem. Thus, all the necessary 

preliminary steps have been taken and a set of initial data (Table 2) has been obtained for 

building neural network surrogate models using deep ANNs [11, 12, 14, 15, 34]. 

Table 2. Reduced design matrix of dimension 2820×24 for creating metamodels. 

Samples 
The training 

sample 

Elements of the reduced design matrix 
( )1

Z  
( )2

Z  … ( )23
Z  

( )24
Z  

1 

training 

-0.0105 -0.1996 … -0.0339 0.00062519 

2 -12.1347 -3.8613 … -0.00099339 -0.0027428 

3 12.1315 3.8307 … -0.00099655 -0.0033554 

… … … … … … 

2256 6.1368 -1.1511 … -0.0279 0.0014048 

2257 

test 

-11.1269 4.2567 … -0.0472 -0.0471 

… … … … … … 

2525 12.5145 4.6223 … -0.0012473 0.0167 

2526 
cross-

validation 

10.0705 -4.395 … -0.0073356 -0.00099244 

… … … … … … 

2793 13.6944 1.5075 … 0.0000021049 -0.0115 

2794 

verification 

0.9098 -2.6965 … 0.0479 -0.0017216 

… … … … … … 

2820 -7.7759 -5.2525 … 0.0155 0.0137 

As a result, neural networks were created for the real and imaginary parts of the EMF 

separately, the general architecture of which with the specified number of neurons in each 

hidden layer and their symbols are shown in Fig. 4. At the same time, it should be noted that all 

hidden layers have a hyperbolic tangent activation function, and the output layer has a linear 

one. For the imaginary part of the EMF, three neural networks were obtained with errors MAPE, 

% (Mean Absolute Percentage Error) 0.103, 0.097, 0.105 %, respectively. In order to improve 

the accuracy of the metamodel, ensemble averaging was applied. As a result, valid metamodels 

with low values of the average approximation error MAPEmetamod were built, as shown in Fig. 4. 
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Fig. 4. Architecture of deep neural networks used to build metamodels. 

Both created metamodels are adequate and informative according to Fisher's criterion at the 

5% significance level. The coefficient of determination for both of them is R2=0.991. Thus, this 

allows us to proceed to the next stage, namely, to perform the optimization process in the 

reduced search space. As mentioned above, twenty-six samples were reserved to be used to 

verify the reliability of the solution to the inverse problem of profile reconstruction. From these 

data, three samples were selected to perform the procedure for identifying the profiles of the 

physical properties of the TO (Table 3). 

Table 3. Samples for verification of the procedure for determining the profiles of electrophysical properties  

of TO. 

Samples Conditional layers r [mm] ECP signal 

1 2 … 59 60  Re(emes) Im(emes) 

1 
µver. 25.135 25.068 … 10.088 10.074 

43.66 -1.841 -4.474 
σver [S/m] 9857861 9459998 … 2148872 2126980 

2 
µver. 25.791 25.721 … 10.092 10.077 

21.16 -0.528 -0.876 
σver [S/m] 10021950 9616082 … 2157900 2135568 

3 
µver. 34.965 34.854 … 10.145 10.122 

6.16 -0.041 -0.065 
σver [S/m] 9037426 8679576 … 2103729 2084039 

 

The effectiveness of applying metaheuristic algorithms for a wide class of problems has been 

shown in [14, 23, 35-38], and for inverse profile reconstruction problems, the authors 

demonstrated in [11, 12] using a stochastic metaheuristic hybrid global optimization algorithm. 

As a result, a set of solution vectors in a reduced space was obtained for each measurement 

case, the results of which were averaged. By projection using the iterative inverse Kernel PCA 

transformation [8], the desired profiles of the physical parameters of the TO in the original 

space are found. The accuracy of the solution for the verification samples was evaluated by the 

values of the relative error δ, %, provided that their profiles µver and σver are known (Table 3). 

Fig. 5 shows a graphical representation of the distributions of relative errors and, additionally, 

the values of errors MAPE, % reproduction of each of the corresponding profiles for the 

proposed verification measurement samples. 
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b) 

 

Fig. 5. Graphs of distributions of relative errors of verification measurements of MP profiles (a)  

and of EC profiles (b). 

4. Discussions 

The studies similar in methodology, but using the PCA method to reduce the dimensionality 

of the metamodels, were performed by the authors with apriori consideration of the information 

in the metamodels on various probe excitation frequencies. The results of identifying profiles 

at excitation frequencies f = 2-10 kHz in the reduced space, expressed as maximum errors 

MAPE, were 0.689 % for the MP and 0.518 % for the EC. In this case, it was possible to reduce 

the search space to 51 % of the original one. 

At the same time, model calculations for verification samples in these studies on indirect 

measurements of the electrophysical profiles of planar TOs indicate a greater efficiency of the 

proposed methodology with Kernel PCA space reduction technology, taking into account 

additional information on EMF measurements by coils of different radii in metamodels. Here, 

the obtained values of errors MAPE, % for the reconstructed MP profiles are in the range from 

0.0102 % to 0.012 %, and for the EC - from 0.0092 % to 0.014 %. The reduction of the search 

space using this method is 80 %, which is a much better result compared to the PCA method 

used for this purpose. 

5. Conclusions 

Thus, the study proposes a method for indirect simultaneous measurement of profiles of 

electrophysical properties of planar objects using eddy current testing technology, based on the 

accumulation of additional apriori knowledge in digital format in neural network metamodels 

with nonlinearly reduced dimensionality. The method involves solving an optimization problem 

by applying a heuristic bionic hybrid algorithm for finding a global extremum using surrogate 

modeling techniques in a reduced dimension subspace. 

The apriori accumulation of information is provided in high-performance and low-cost 

metamodels implemented on the basis of deep fully connected neural networks that take into 

account, in addition to the electrophysical parameters of the TO, additional information, 

including incomplete information. At the same time, the accuracy of the created surrogate 

models, estimated by the errors MAPEmetamod separately for the real and imaginary parts of the 

EMF, is 0.0512 % and 0.07 %, respectively. 

The use of the Kernel PCA method significantly simplified the conditions for finding an 

extremum by the optimization algorithm by reducing the number of search variables, which 

allowed us to move from a 121-dimensional full-factor space to a reduced one with dimension 
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24. The proposed method can be used to assess the quality of various manufacturing processes 

based on the results of indirect measurements. 
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