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Abstract 

Sensor-based Human Activity Recognition (SHAR) technology is dedicated to utilizing sensor signals from smart 

devices to detect and identify human activities, thereby assisting in daily life. With the successful application of 

deep learning techniques, researchers are exploring the potential of integrating them with SHAR. Traditional fixed 

sliding window methods for processing datasets often lead to multi-class activity mixing. To alleviate this issue, 

researchers have introduced time attention mechanisms to focus on key temporal points related to activities. To 

Addressing this challenge, we propose an innovative Multi-scale Time Segments Attention Mechanism (MTSA), 

which diverges from traditional time attention mechanisms by focusing on time segments pertinent to activities, 

better aligning with the characteristics of SHAR data and significantly reducing computational resource 

consumption. Our experiments on recognized datasets such as UCI-HAR, PAMAP2, and WISDM validate the 

effectiveness of MTSA, demonstrating that it can be seamlessly integrated into existing SHAR models, enhancing 

performance without adding extra computational overhead. 

Keywords: Time series classification, human activity recognition, Attention Mechanism, deep learning. 

1. Introduction 

With the increasing popularity of smartphones and other wearable devices such as smart 

bands and smart glasses, Human Activity Recognition (HAR) has become a very popular 

research topic. At the same time, HAR has very important applications in various fields, 

especially in scenarios requiring real-time monitoring such as healthcare [1], sports training [2], 

and smart homes [3]. Currently, HAR primarily relies on two methods: one is vision-based [4]; 

the other is sensor-based, mainly using inertial sensors attached to the human body. In recent 

years, researchers have also proposed new HAR methods based on WIFI channel state 

information [5], LiDAR [6], and millimeter-wave radar [7]. However, these and vision-based 

HAR methods often suffer from high costs, limited usability, sensitivity to environmental 

obstructions, and potential privacy concerns. In contrast, Sensor-based Human Activity 

Recognition (SHAR) offers a higher cost-performance ratio and has more distinct advantages 

in terms of comfort and privacy protection [8]. 

The standard process of SHAR includes five steps: data collection, data preprocessing, 

window segmentation, feature extraction, and action category output. Early SHAR often 

employed machine learning (ML) methods for feature extraction, which typically relied on 

shallow, handcrafted features such as mean, variance, amplitude, and frequency statistics [9–

11]. While ML performs well in recognizing low-level activities such as standing and walking, 

it often falls short in identifying complex activities. In recent years, researchers have found that 

SHAR methods based on deep learning (DL) significantly outperform traditional machine 

learning approaches in context-aware and fine-grained activities [12]. 
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In the field of DL, common methods for feature extraction mainly include Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), as well as various variants 

of them. Although CNNs were originally designed for image processing, they have also shown 

some advantages in time series classification tasks. Teng et al. [13] introduced an efficient 

dynamic network called RepHAR, which utilizes structural reparameterization techniques to 

decouple the model during training and inference processes. Yang et al. [14] proposed an 

optimal activity graph generation model that converts time series into images, which are then 

recognized using convolutional neural networks. Gao et al. [15] used a multi-branch CNN 

structure that can adaptively select between branches with different convolutional kernels, 

effectively obtaining a dynamic receptive field. RNNs are specifically designed to process 

sequential data, maintaining connections with previous information through hidden states and 

continuously updating with new inputs. The most common variants of RNNs are Long Short-

Term Memory (LSTM) and Gated Recurrent Unit (GRU). Ishimaru et al. [16] proposed using 

a bidirectional LSTM (BiLSTM) to recognize and record users’ reading activities, with 

BiLSTM combining forward and backward LSTMs to more comprehensively capture 

contextual information in the data. Combining the application of CNNs and RNNs has become 

a mainstream methodology. This fusion strategy optimizes the model’s ability to capture 

spatiotemporal features, thus significantly improving recognition accuracy when dealing with 

spatial data with temporal dependencies. Yao et al. [17] combined CNN and GRU modules in 

their proposed DeepSense framework, effectively avoiding noise interference in sensors and 

optimizing energy consumption and latency, as GRUs are more efficient than LSTMs. Zhang 

et al. [18] used an improved ResBiLSTM network to extract time series features from data 

processed by 1DCNN. The ResBiLSTM network integrates residual structures and layer 

normalization into a BiLSTM. This integration enhances the network’s feature extraction 

capabilities. 

Furthermore, attention mechanisms have been widely applied in the field of DL-based 

SHAR. Attention mechanisms dynamically adjust feature responses, enhancing the model’s 

ability to capture key information, thereby achieving better results in complex activity 

recognition tasks. Ding et al. [19] utilized the Squeeze-and-Excitation (SE) module to obtain 

the weight relationships between tensor channels after convolution, and used the weighted data 

as input for the LSTM. The SE compresses the spatial information of feature maps into a 

channel descriptor through global average pooling, then learns the inter-channel dependencies 

using two fully connected layers, and obtains the weights for each channel through a sigmoid 

function [20]. Jitpattanakul and Mekruksavanich [21] introduced the Efficient Channel 

Attention (ECA) mechanism to avoid creating complex attention components, which uses a 

single-layer 1D convolution to replace the two fully connected layers in SE, with the aim of 

reducing computational resource consumption. 

Despite the substantial progress made by SHAR methods based on DL in feature extraction, 

there are still challenges. First, determining the optimal window size for activity coverage 

remains an unresolved issue. In practical applications, due to the uncertainty of different activity 

cycles, using a fixed-size window to cover individual complete activities is impractical [21]. 

To address this issue, many scholars have introduced temporal attention mechanisms, which, 

unlike the channel attention mechanisms such as SE and ECA mentioned earlier, are techniques 

for processing sequential data. It allows the model to assign different levels of importance or 

attention to information at different time steps when processing temporal data. For example, 

the Convolutional Block Attention Module (CBAM) [22] and Self Attention (SA) mechanism 

[23] can capture attention features in the temporal dimension of time series data. CBAM 

performs calculations for channel and spatial attention, where spatial attention can be 

understood as temporal attention in time series data. Finally, the feature maps obtained from 

these two attention mechanisms are merged to enhance the network’s feature representation 
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capability. SA first initializes the Query, Key, and Value matrices of the input sequence, then 

calculates the similarity scores between the Query and all Keys. Then, the scores are converted 

into a probability distribution using the softmax function, and finally, the Value matrix is 

weighted and summed according to this probability distribution to obtain the final output vector. 

SE was originally designed to compute channel attention, but by swapping the channel and time 

dimensions in the data, temporal attention can also be calculated. Lu and Deng [24] applied the 

masking concept from image restoration to temporal signal processing, simplifying the U-Net 

used for denoising in images and incorporating residual structures and CBAM. This is to focus 

on the targets to be identified in the data. Mekruksavanich et al. [25] first used CNN layers to 

analyze sensor data and extract spatial features in their research. Then, these features were used 

to provide temporal sequence context for the BiLSTM network. Finally, through the CBAM 

attention mechanism, the model can focus on the most critical information in the BiLSTM 

feature maps. Wang et al. [26] proposed a new deep multifeature extraction framework based 

on attention mechanisms (DMEFAM). This mechanism incorporates self-attention mechanisms 

and CBAM, while also integrating CNNs and bidirectional gated recurrent units (Bi-GRU). 

Therefore, DMEFAM can extract a rich variety of features. 

However, existing methods often allocate attention to every time point within a window, 

overlooking the fact that activities typically occur in time segments. This approach not only 

leads to unnecessary waste of computational resources but also, due to the uneven distribution 

of attention between adjacent time points, may disrupt the intrinsic dependencies within time 

series data. Zheng [27] proposed a model called LGSTNet, which divides the activity window 

into multiple sub-windows and allocates attention to each sub-window. This method alleviates 

the aforementioned issues to some extent, but due to the fixed size of sub-windows, it may lead 

to problems of over-segmentation or multi-class windows [21].  

To address the limitations inherent in existing methodologies, particularly the elevated 

computational demands of attention mechanisms that can impose significant performance 

constraints in resource-limited settings, and acknowledging that many contemporary attention 

frameworks are primarily designed for visual tasks and thus may not constitute the most 

efficacious approach for HAR, this study proposes a new attention mechanism: Multi-Scale 

Time Segments Attention (MTSA). Unlike the coarse calculation of attention for each timestamp 

or fixed-size time segments, MTSA divides the time series at different scales and applies 

attention weighting on this basis. This mechanism not only considers the overall features of the 

time series but also captures key information at different time scales, thereby enhancing the 

model’s ability to represent time series data. 

The structure of this paper is as follows: Chapter 2 introduces the proposed MTSA. Chapter 

3 describes the experimental environment and evaluation metrics. Chapter 4 presents the 

experimental results. Chapter 5 provides conclusions. 

2. Method 

2.1. Task Description 

In this study, our goal is to identify the user’s current activity from data collected by Inertial 

Measurement Units (IMUs). An IMU typically incorporates a 3-axis accelerometer and a 3-axis 

gyroscope to measure acceleration and angular velocity in three-dimensional space, known as 

a 6-axis IMU. Nowadays, IMUs can include a magnetometer in addition to the accelerometer 

and gyroscope, making it a 9-axis IMU. We assume that the user wears m IMUs, each 

containing n sensors, thus each sampling point includes N sensor readings, where N = m×n×3. 

In SHAR, the prediction target is often a period of data to identify the activity occurring during 

that time. Therefore, a fixed-size sliding window is often used to segment the original sequence. 
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Specifically, setting the window size to W and the step size to S, the sliding window operation 

can be represented as: 

 1 1 1 1{ , , , },{ , , , },t t t W t S t S t S Wx x x x x x+ + − + + + + + −    (1) 

where xt represents the value of the time series at time t. The step size S is generally less than 

W, ensuring that all data from the original sequence is included and the number of samples is 

increased. The size of the window is often determined by the sensor’s sampling rate, with the 

optimal choice being able to cover the duration of a complete action within the activity. 

The set of activity labels can be represented as Y = {1, 2, 3, …, k}, where k denotes the 

number of types of activities. Therefore, in the dataset, each sample can be represented as Si = 

(wi, yi), 
N W

iw  , 
iy Y . Specifically, our task is to predict the label yi from the data of a 

window wi. Fig. 1 illustrates the framework of a SHAR system. In this diagram, the structure 

of the feature extraction component is presented as the baseline model architecture used in the 

experimental section.  

The baseline model proposed in this study consists of five consecutive basic blocks, each 

comprising a convolutional layer, a batch normalization (BN) layer, a Rectified Linear Unit 

(ReLU) activation layer, and a MTSA layer. The model concludes with processing via a 

multilayer perceptron (MLP), which ultimately yields the classification results. 

 

Fig. 1. Overview of the SHAR framework and proposed baseline model. 

2.2. Multi-Scale Time Segments Attention 

From the task description above, we find that using a fixed-size window to segment the 

dataset may pose a problem, as the data within the window might contain multiple activities. 

This heterogeneity of data could negatively impact the model’s predictive accuracy. To 

overcome this challenge and enhance the key information in the data features, we propose a 

novel attention mechanism for HAR data, MTSA, which focuses on weighted processing of 

features over time periods rather than features of a single point. The details of this mechanism 

will be described below. 

In the processing of sequential data, whether it is CNNs or RNNs, the extracted feature 

vectors inherently possess a temporal attribute. Features are extracted corresponding to the 

order of elements’ appearance in the original sequence. Consequently, features related to the 

target activity often cluster together, appearing in the form of time segments. To capture the 

time segments of event-related features, the MTSA algorithm initially divides each input feature 

vector into B equal segments. Within these segments, at least one or more contain the 

occurrence of the event, while other segments may include data of non-target events. Such 

processing aims to isolate the event itself from the data and subsequently increase the weight 

of this data portion. The original input data C LF  , after being grouped, yields  
/B C L BF   , where C represents the number of data channels, and L represents the length of 

the data. To explicitly model the dependencies between different time segment subsets, we use 

a time segment statistical information to describe the global information of each time segment. 
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This statistical information is described using the mean and maximum values of all data within 

this time segment. Studies have shown that the combination of these two types of data can 

effectively improve the model’s accuracy [22]. The calculation steps for obtaining the statistical 

information zb of the b-th time segment feature are as follows: 

 

/

1 ,1 /
1 1

1
{ ( , ); max ( , )}

/

C L B
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i C j L B

i
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
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To obtain 
2 BZ  , all statistical information from the B time segments is integrated. In 

order to utilize the statistical information of these time segments to capture the relevant 

dependencies between them, we employ a layer of one-dimensional convolution to adaptively 

fuse this statistical information. Previous research often used a scaling factor r to reduce 

computational costs [20, 22], but an incorrect setting of r could lead to a certain degree of 

information loss. Our method compresses the time segment data, achieving a significant 

reduction in data volume, allowing a single-layer convolution to complete the fusion, thus 

avoiding the risk of overfitting due to excessive training parameters. The calculation method 

for the generated time segment weight attention
1 BA   is as follows: 

 (Conv1d( ))A Z= , (3) 

where Conv1d denotes a 1-D convolutional layer, with the kernel size set to 3, and both stride 

and pooling size set to 1.   represents the sigmoid function. The final output is obtained by 

multiplying the elements of attention A with each element in the corresponding time segment, 

and concatenating all time segments data along the first dimension. The calculation steps are as 

follows: 

 F F A=  , (4) 

 
s( Re hape/ )B C L B C LF F  ⎯⎯⎯ →  . (5) 

To accurately capture the temporal granularity of activity occurrences, we divide the input 

feature vectors along the time dimension into multiple time segments of varying scales and 

compute their time block attention. Finally, we fuse the weighted data across different scales. 

This approach allows MTSA to adaptively capture the time granularity required for different 

activities. The specific calculation steps are illustrated in Fig. 2. 

 
Fig. 2. Detailed calculation steps for MTSA. 
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3. Experimental setup 

3.1. Dataset introduction 

To conduct a comprehensive evaluation of our model, we consider multiple factors, 

including sampling rate, sensor type and quantity, as well as categories of activities. Drawing 

on these dimensions, we select three datasets as benchmarks to ensure the effectiveness and 

reliability of our model. The UCI-HAR and WISDM datasets mainly cover simple activities in 

everyday life, whereas PAMAP2 adds the identification of complex activities. UCI-HAR 

contains accelerometer and gyroscope data, PAMAP2 further incorporates magnetometer data 

on top of that, and WISDM uses only accelerometer data. In addition, the three datasets differ 

in sampling rate, ranging from 20 Hz to 50 Hz. These differences may impact the performance 

of the model. Specifically, a higher sampling frequency can capture more dynamic details, 

thereby helping to improve the model's recognition accuracy; a larger sample size of 

participants allows the model to learn a wider range of individual differences, thus enhancing 

its generalization capabilities; and the need for recognizing complex activities requires stronger 

feature extraction and classification capabilities, which places greater demands on the design 

and training of the model. 

To facilitate fair comparisons with other studies, we employ the same dataset parameters as 

those used in previous works. To improve the reliability of the experimental results, we adopted 

the method of repeated experiments and taking the average value. Specifically, each result 

comes from the average of ten independent runs, each run using a different random 

initialization. This method ensures the robustness of the results and avoids the problem of local 

optimal solutions caused by the randomness of a single experiment. The following text provides 

a detailed introduction to these three datasets. 

UCI-HAR [28] The UCI-HAR dataset serves as a collection of smartphone sensor data 

specifically designed for human activity recognition. It encompasses measurements from the 

linear accelerometer and gyroscope sensors along the x, y, and z axes, all sampled at a frequency 

of 50 Hz. The dataset has undergone noise filtering and involves 30 participants aged between 

19 and 48 years who performed six standard activities (such as standing, sitting, and stair 

climbing). The data is segmented into fixed windows of 2.56 seconds (equivalent to 128 data 

points) with a 50% overlap. For the final composition of the dataset, data from 21 participants 

were selected for the training set, while the remaining 9 participants constituted the test set, 

following the default allocation scheme of the dataset. 

PAMAP2 [29] The PAMAP2 dataset comprises data collected from nine participants who 

were equipped with 9-axis inertial measurement units (IMUs) placed on their chest, wrist, and 

ankle. The IMUs sampled data at a frequency of 33 Hz. Participants were instructed to perform 

a standardized set of activities, including 12 fundamental actions (such as lying down, standing, 

and stair climbing) and 6 self-selected activities (such as watching TV, driving a car, and 

engaging in ball sports). To eliminate noise during static periods, data from the 10 seconds 

before and after each activity were removed. The data was segmented into fixed windows of 

5.12 seconds, with a 78% overlap between adjacent windows. For dataset composition, 80% of 

the data served as the training set, while the remaining 20% constituted the test set. 

WISDM [30] The WISDM dataset is constructed from experimental data collected from 29 

participants who carried smartphones equipped with three-axis accelerometers in their trouser 

pockets during daily activities. The data was sampled at a frequency of 20 Hz. Participants were 

required to perform six designated activities each day, including walking, slow walking, stair 

ascent, stair descent, standing still, and standing. To ensure data integrity and consistency, any 

missing values in the dataset were imputed using the corresponding column averages. Data 

windows were set to a length of 10 seconds, with a 95% overlap between adjacent windows. 
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For data segmentation, 70% of the data was randomly selected as the training set, while the 

remaining 30% served as the test set. 

3.2. Evaluation metrics 

Accuracy and F1-score are both metrics used to evaluate the performance of classification 

models. Accuracy refers to the proportion of correctly predicted samples by the classification 

model out of the total number of samples, which is calculated as the number of correctly 

classified samples divided by the total number of samples. The formula for Accuracy is as 

follows: 

 Accuracy
TP TN

TP TN FP FN

+
=

+ + +
 (6) 

where TP (True Positive) denotes an instance where the model correctly predicts the positive 

class, TN (True Negative) indicates a correct prediction of the negative class, FP (False 

Positive) represents an incorrect prediction of the positive class, and FN (False Negative) 

signifies an incorrect prediction of the negative class. 

The F1-score emerges as a critical metric, encapsulating the harmonic mean of Precision and 

Recall. Recall is defined as the ratio of accurately predicted positive instances to the total actual 

positives, whereas Precision is characterized by the ratio of true positive predictions to all 

positive predictions made by the model. This dual consideration ensures a balanced assessment, 

capturing the essence of the model’s precision in identifying true positives and its sensitivity 

towards the actual positive cases. The formula for F1-score is as follows: 

 
2 Precision Recall

F1-score=
Precision+Recall

 
 (7) 

Within the realm of classification models, Accuracy finds its utility in scenarios where 

sample distributions exhibit balance. Conversely, the F1-score comes into play when handling 

imbalanced datasets. In real-world applications, a holistic evaluation of model efficacy often 

entails simultaneous scrutiny of both metrics.  

3.3. Experimental software and hardware platform 

In this study, we employed the PyTorch deep learning framework based on the Windows 

operating system for training and testing our SHAR models. Our hardware setup utilized a 

laboratory computer with the following specifications: an NVIDIA RTX 3060Ti graphics 

processing unit (GPU), an AMD Ryzen 5 5600 central processing unit (CPU), and 32GB of 

random access memory (RAM). 

Building upon successful experiments by previous researchers, we set the number of training 

epochs for all experiments to 200. As the optimization algorithm, we chose the Adam optimizer 

with an initial learning rate of 0.001. To adapt to performance variations during training, we 

dynamically reduced the learning rate by 10% every 50 training epochs. This strategy aims to 

fine-tune the model’s weight adjustments gradually, optimizing the convergence process and 

enhancing the model’s generalization capability. For the loss function, we selected the cross-

entropy loss due to its stability and effective gradient information when handling multi-class 

classification tasks, contributing to more accurate updates during training. 
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4. Experimental results and analysis 

In this research, we embed the prevalent attention mechanisms and our proposed MTSA into 

the same baseline model across three datasets (UCI-HAR, PAMAP2, and WISDM) to 

preliminarily evaluate the performance of MTSA. The structure of the baseline model is 

depicted in Fig. 1. We differentiate MTSA by the number of branches, subdividing it into 

MTSA_D2, MTSA_D4, MTSA_D6, and MTSA_D8. For instance, MTSA_D2 segments the 

input features into time slices at two different scales and computes the temporal segment 

attention within two branch networks. Similarly, MTSA_D4 divides the input features at four 

distinct scales. Each branch processes the input time series data at a different scale, with a higher 

number of branches corresponding to finer temporal segmentation. This approach enhances the 

model's capability to accurately recognize fine-grained activities, as finer temporal resolution 

can capture more detailed dynamics within the data. However, this improvement in recognition 

accuracy is accompanied by an increased computational demand, as finer segmentation requires 

more intensive processing. Therefore, the trade-off between recognition accuracy and 

computational efficiency is a critical consideration in our experimental design. As shown in 

Table 1, the performance of MTSA varies across datasets with different branch numbers. In the 

UCI-HAR dataset, MTSA_D6 significantly outperforms other branch numbers. However, in 

the other two datasets, MTSA_D8 shows the best performance, not MTSA_D6. This 

discrepancy is due to MTSA’s sensitivity to the sliding window size of the datasets; a larger 

sliding window necessitates an increase in MTSA branches to enhance the granularity of feature 

segmentation. In the PAMAP2 and WISDM datasets, too few branches may lead to 

performance degradation, as evidenced by MTSA_D2 and MTSA_D4, which underperform 

compared to the baseline model without any attention mechanism. 

Table 1. Comparison of accuracy (%) and F1-score (%) of baseline model with different attention mechanisms 

on three datasets. 

Dataset 

Model 
UCI-HAR PAMAP2 WISDM 

Baseline 95.72/95.45 93.30/93.31 98.31/98.24 

Baseline+SE 95.76/95.71 92.88/92.86 98.32/98.33 

Baseline+CBAM 96.57/96.55 93.47/93.41 98.51/95.49 

Baseline+SA 95.28/95.24 93.66/93.66 98.24/98.23 

Baseline+MTSA_D2 96.17/96.02 92.95/92.96 97.98/97.96 

Baseline+MTSA_D4 96.50/96.50 93.24/93.23 98.29/98.29 

Baseline+MTSA_D6 97.18/97.18 93.34/93.31 98.33/98.32 

Baseline+MTSA_D8 96.10/96.07 93.51/93.50 98.52/98.47 

 

The baseline model equipped with MTSA mechanism achieves the highest Accuracy and 

F1-score performance on both the UCI-HAR and WISDM datasets. In the PAMAP2 dataset, 

MTSA is outperformed by the SA mechanism due to the rich data volume collected using three 

nine-axis IMUs. SA excels when ample data is available, but its performance declines on the 

less data-rich UCI-HAR and WISDM datasets. Concurrently, as shown in Table 2, we present 

the Floating Point Operations (FLOPs) and the number of parameters (Param) for each module 

under consistent input feature size. SA’s computational power consumption is considerably 

high, whereas MTSA’s computational load and parameter count, although increasing with the 

number of branches, are negligible compared to other attention mechanisms. 
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Table 2. Comparison of FLOPs and Param with Different Attention Mechanisms. 

Model FLOPs Param 

SE 10.368K 2.048K 

CBAM 11.072K 0.526K 

SA 704.384K 5.2K 

MTSA_D2 0.030K 0.014K 

MTSA_D4 0.084K 0.028K 

MTSA_D6 0.162K 0.042K 

MTSA_D8 0.264K 0.056K 

 

We also explore the integration of MTSA into existing neural network architectures to 

validate its generalization capabilities and to ascertain whether the optimal number of MTSA 

branches varies across different network structures. Prior to this, we investigated the impact of 

embedding MTSA at various points within the network architecture on model accuracy. As 

shown in Fig. 3, we embed MTSA_D6 into different positions of the residual blocks in 

ResNet18, including after the convolutional layer, after the BN layer, after the ReLU layer, in 

the identity mapping branch, and after the addition operation. Figure. 4 demonstrates that, upon 

evaluating the performance of the MTSA_D6 module embedded at these locations using the 

UCI-HAR dataset, the model exhibits optimal performance when MTSA is embedded after the 

ReLU layer. The non-linear properties of the ReLU layer facilitate more efficient gradient 

propagation to deeper layers of the network, thereby aiding in the effective training and fine-

tuning of MTSA parameters. 

 

Fig. 3. Embedding MTSA_D6 in different locations of the residual blocks. (a) after the convolutional layer,  

(b) after BN layer, (c) after ReLU layer, (d) in the identity mapping branch, (e) after the addition operation. 
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Fig. 4. Accuracy variation curve of MTSA_D6 embedded in different positions of residual blocks trained on 

UCI-HAI dataset. 

Figure 5 provides a detailed analysis of the impact of incorporating MTSA into three 

different neural network architectures: VGG, ResNet18, and BiLSTM, across two datasets: 

UCI-HAR and PAMAP2. Given that the UCI-HAR and PAMAP2 datasets cover activity types 

of varying complexity as well as a wide range of sensor types, we chose these two datasets in 

this part of the experiment to evaluate model performance. The evaluation metrics considered 

are model accuracy and F1-score. To accommodate time-series data processing, both the VGG 

and ResNet18 models underwent modifications. Specifically, the standard 2D convolutional 

layers were replaced with 1D convolutional layers. Additionally, the BiLSTM model was 

configured with 256 neurons. In the case of VGG and ResNet18, the MTSA was placed after 

the activation function to enhance feature representation. For the BiLSTM model, the MTSA 

was positioned between the BiLSTM layer and the fully connected layer. This strategic 

placement leverages the contextual information generated by the BiLSTM layer, allowing for 

more effective identification and utilization of key features, ultimately improving overall model 

performance and accuracy. Experimental results demonstrate that configuring MTSA with an 

appropriate number of branches significantly enhances model performance across all three 

architectures. Notably, combining MTSA with ResNet18 achieved the highest accuracy levels 

on both datasets. Specifically, in the UCI-HAR dataset with a sliding window size of 2.56 

seconds, MTSA_D6 exhibited the most significant performance improvement across different 

models. Meanwhile, in the PAMAP2 dataset with a sliding window size of 5.12 seconds, 

MTSA_D8 demonstrated the largest performance gain. These findings align with previous 

research conclusions, emphasizing the close relationship between the optimal number of MTSA 

branches and the sliding window size of the dataset. 
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Fig. 5. Comparison of accuracy (%) and F1-score (%) of embedding MTSA into different models. 

In this study, we further embed other attention mechanisms into the same location within the 

same model for comparison. The comparative results are presented in Table 3. We utilize the 

optimal number of MTSA branches as indicated by previous experimental outcomes, 

specifically employing MTSA_D6 for the UCI-HAR dataset and MTSA_D8 for the PAMAP2 

dataset. According to our experimental results, the analysis under different datasets (UCI-HAR 

and PAMAP2) and different models (VGG, ResNet18, BiLSTM) shows that the MTSA module 

significantly improves the performance of the model without increasing the computational 

complexity and the number of model parameters of the the performance of the model. On the 

UCI-HAR dataset, whether based on VGG, ResNet18 or BiLSTM architectures, MTSA brings 

significant performance improvement. In particular, under the ResNet18 architecture, MTSA 

enabled the accuracy and F1-score to reach 97.46% and 97.45%, respectively, outperforming 

other enhancement techniques such as SE, CBAM, and SA. This indicates that MTSA has a 

significant advantage in processing simpler activity recognition datasets such as UCI-HAR. 

On the PAMAP2 dataset, MTSA also shows good performance. Although the accuracy 

improvement of MTSA is not as significant as SA in some cases, such as the ResNet18 

architecture, the additional computational complexity brought by SA cannot be ignored. In 

contrast, MTSA achieves performance gains with little additional computational complexity, a 

feature that makes it more attractive in resource-constrained application environments. 

In Fig. 6, we visually demonstrate the performance changes of the ResNet18 model on the 

UCI-HAR and PAMAP2 datasets before and after incorporating MTSA. From Fig. 6(a) and 

Fig. 6(b), it is evident that ResNet18 exhibits varying degrees of misclassification when 

distinguishing between activities such as ascending and descending stairs or sitting and 

standing. However, with the inclusion of MTSA, the model accurately identifies instances of 

misclassification between these activities, further mitigating the issue. In Fig. 6(c) and Fig. 6(d), 

where a more diverse set of activities is considered, the improvement in recognition accuracy 

is nearly universal after integrating MTSA. These findings align with prior research 

conclusions, emphasizing the close relationship between the optimal number of MTSA 

branches and the dataset’s sliding window size. 
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Table 3. Comparison of Flops, Param, Accuracy, and F1 score between MTSA and other attention mechanisms. 

 UCI-HAR PAMAP2 

Metrics 

Structure 

FLOPs 

(M) 

Param. 

(M) 

Accuracy/ 

F1-score(%) 

FLOPs 

(M) 

Param. 

(M) 

Accuracy/ 

F1-score(%) 

VGG 63.68 35.09 93.72/93.69 78.19 39.31 90.12/90.02 

VGG+SE 63.72 35.09 94.45/94.39 78.25 39.32 90.03/90.02 

VGG+CBAM 63.89 35.17 94.64/94.53 78.42 39.41 92.96/92.91 

VGG+SA 76.48 35.94 89.28/89.29 94.83 40.16 92.88/92.79 

VGG+MTSA 63.68 35.09 94.67/94.67 78.19 39.31 92.76/92.79 

ResNet18 493.48 3.85 96.11/96.03 652.43 3.86 92.83/92.81 

ResNet18+SE 493.74 3.86 96.29/96.31 652.74 3.87 93.46/93.45 

ResNet18+CBAM 493.92 3.94 97.11/97.09 652.93 3.96 93.64/91.46 

ResNet18+SA 605.28 4.72 94.85/94.84 800.24 4.73 93.87/93.84 

ResNet18+MTSA 493.48 3.85 97.46/97.45 652.44 3.87 93.76/93.77 

BiLSTM 221.91 1.72 92.12/92.05 297.66 1.75 90.07/90.06 

BiLSTM +SE 221.94 1.73 93.64/93.66 297.69 1.76 90.81/90.74 

BiLSTM +CBAM 221.96 1.73 94.41/94.41 297.71 1.76 92.14/92.15 

BiLSTM +SA 227.35 1.75 93.76/93.74 303.15 1.78 92.97/92.79 

BiLSTM +MTSA 221.91 1.72 94.66/94.66 297.66 1.75 92.72/92.69 

 

To further evaluate the robustness and practicality of MTSA, and to ensure consistency in 

experimental conditions, we replaced the attention mechanisms in the most advanced time-

series analysis frameworks with MTSA. We then compared the accuracy and parameter count 

of the models before and after the replacement. Based on the experimental results, MTSA with 

varying branch numbers was utilized across different datasets: MTSA_D6 for UCI-HAR, and 

MTSA_D8 for PAMAP2 and WISDM. The models compared included the following four: 

Model 1 [26]: DMEFAM (Deep Multi-Feature Extraction Framework based on Attention 

Mechanism) encompasses a Temporal Attention Feature Extraction Layer (TAFEL), a Channel 

and Spatial Attention Feature Extraction Layer (CSAFEL), and an output layer. TAFEL 

consists of Bidirectional Gated Recurrent Units (Bi-GRU) and a Self-Attention (SA) 

mechanism, while CSAFEL is composed of a Convolutional Block Attention Module (CBAM) 

and Residual Network 18 (ResNet-18). In this study, we substitute the SA mechanism in TAFEL 

with our Multi-scale Temporal Self-attention (MTSA) mechanism and conduct a performance 

comparison. 

Model 2 [12]: CNN-LSTM architecture begins with four sequentially connected 

convolutional blocks, followed by two layers of LSTM units. Between the LSTM layers, we 

employ a self-attention mechanism to highlight temporally relevant features. During the 

comparison phase, we replace the original SA mechanism with MTSA. 

Model 3 [31]: TS-DyConv (Temporal-Spatial Dynamic Convolution) utilizes an SE module 

to perform attention calculations on both temporal and spatial dimensions of the convolutional 

kernels, weighting them to synthesize a novel convolutional kernel. This approach not only 

diversifies the convolutional kernels but also enhances the model’s representational capacity. 
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In our research, we use standard convolutional kernels combined with the MTSA mechanism 

to replace the original attention-based kernels. 

Model 4 [32]: IDeepConvLSTM, similar to CNN-LSTM, merges Convolutional Neural 

Networks and LSTM to extract temporal and spatial features. The distinction lies in the 

embedding of an SE module within the convolutional neural network to emphasize key features. 

In our study, the MTSA mechanism is utilized to replace the SE module. 

 

Fig. 6. Comparison of Confusion Matrices Before and After Embedding MTSA in Resnet18. 

As Table 4 illustrates, the substitution of the attention mechanism with MTSA resulted in 

varying degrees of improvement across all models, except for the CNN-LSTM model on the 

UCI-HAR dataset, which did not show an increase in accuracy. Notably, MTSA does not 

impose an additional parameter burden on the models; in fact, it often results in a reduction of 

parameters after replacing the original attention mechanism. It is observed that TS-DyConv is 

also a remarkably lightweight network. Thanks to the attention computation applied to the 

convolutional kernels, there is no significant increase in the number of parameters. However, it 

is known from the original text that the computational load has increased significantly, 

contributing to longer inference times [31]. After replacing the SA mechanism with MTSA, the 

CNN-LSTM achieved the best accuracy on the PAMAP2 and WISDM datasets, yet its 

parameter count is several times larger than that of the other models. This is attributed to its use 

of oversized convolutional kernels, which provide a larger receptive field and thereby enhance 

model performance. 
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Table 4. Comparison of other advanced models before and after replacing MTSA. 

 UCI-HAR PAMAP2 WISDM 

DMEFAM 96.0%/1.60M 92.77%/1.72M 97.9%/1.55M 

CNN-LSTM 98.29%/42.3M 93.89%/43.1M 98.77%/41.9M 

TS-DyConv 97.21%/0.11M 93.04%/0.12M 98.16%/0.11M 

IDeepConvLSTM 96.51%/0.98M 92.75%/0.99M 97.14%/0.98M 

DMEFAM-MTSA 97.47%/1.11M 93.77%/1.23M 97.94%/1.06M 

CNN-LSTM-MTSA 98.14%/36.2M 94.41%/37.1M 98.86%/35.6M 

TS-DyConv-MTSA 97.96%/0.11M 93.79%/0.12M 98.48%/0.11M 

IDeepConvLSTM-MTSA 97.55%/0.98M 93.64%/0.98M 98.07%/0.98M 

5. Conclusion 

To address the issue of multi-class activity mixing when using fixed-size sliding windows 

to segment datasets in the field of SHAR, and the current limitations of temporal attention 

mechanisms that tend to borrow spatial attention mechanisms from the field of image 

classification or natural language processing without optimization for SHAR data 

characteristics, this study introduces MTSA mechanism. The MTSA considers activities as 

segments within the data, thus dividing the data into equal-sized temporal segments and 

calculating statistical information for these segments to determine their attention weights. 

Moreover, to accommodate different types of activities, the MTSA also integrates attention 

information from temporal segments of varying sizes. Extensive evaluations on the UCI-HAR, 

PAMAP2, and WISDM datasets demonstrate that the incorporation of MTSA significantly 

enhances performance in both baseline and existing model frameworks without adding extra 

computational burden. This is because MTSA calculates attention weights for temporal 

segments rather than for each individual timestamp, thereby substantially reducing the 

computational load. Furthermore, by adjusting the number of MTSA branches, the model’s 

robustness can be effectively enhanced when dealing with activities of varying complexities or 

data sampled at different rates. Consequently, MTSA is capable of handling activity recognition 

tasks across a wide range of scenarios. Notably, the combination of CNN-LSTM with MTSA 

achieves accuracy rates of 98.14%, 94.41%, and 98.86% on the aforementioned datasets, 

respectively, positioning them at the forefront of current advancements. 

The proposed MTSA module has demonstrated significant performance improvements in 

multiple experiments, particularly in resource-constrained environments, highlighting its broad 

potential for practical applications. In the field of health monitoring, MTSA can be applied to 

sensor data processing in wearable devices to achieve more accurate body activity recognition, 

while its low computational complexity helps reduce power consumption and extend device 

battery life. We believe that with further research and development, MTSA will play a key role 

in future smart devices and services, providing users with smarter, more convenient, and safer 

experiences. This technological advancement offers new approaches to addressing real-world 

activity recognition challenges. 

Currently, we apply a uniform time interval for the segmentation of all time series. However, 

the ideal scenario would involve segmenting data from different sensors or axes according to 

their individual characteristics. In future research, we aim to segment these time series at 

varying scales to enhance the model's generalization capability. 



Metrol. Meas. Syst., Vol. 32 (2025), No. 1 

DOI: 10.24425/mms.2025.152778 

 

References  

[1] Xu, T., Se, H., & Liu, J. (2020). A two-step fall detection algorithm combining threshold-based method and 

convolutional neural network. Metrology and Measurement Systems, 28(1), 23–40. 

https://doi.org/10.24425/mms.2021.135999  

[2] Ding, H., Shangguan, L., Yang, Z., Han, J., Zhou, Z., Yang, P., Xi, W., & Zhao, J. (2015). FEMO: A Platform 

for Free-weight Exercise Monitoring with RFIDs. Proceedings of the 13th ACM Conference on Embedded 

Networked Sensor Systems, 141–154. https://doi.org/10.1145/2809695.2809708  

[3] Deep, S., & Zheng, X. (2019). Leveraging CNN and Transfer Learning for Vision-based Human Activity 

Recognition. 2019 29th International Telecommunication Networks and Applications Conference (ITNAC), 

1–4. https://doi.org/10.1109/ITNAC46935.2019.9078016  

[4] Sun, Z., Ke, Q., Rahmani, H., Bennamoun, M., Wang, G., & Liu, J. (2022). Human Action Recognition From 

Various Data Modalities: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–

20. https://doi.org/10.1109/TPAMI.2022.3183112  

[5] Jiao, W., & Zhang, C. (2023). An Efficient Human Activity Recognition System Using WiFi Channel State 

Information. IEEE Systems Journal, 17(4), 6687–6690. https://doi.org/10.1109/JSYST.2023.3293482  

[6] Yao, Q.-Y., Chen, P.-L., & Chen, T.-S. (2023). Human Activity Recognition Using 2-D LiDAR and Deep 

Learning Technology. IEEE Sensors Letters, 7(10), 1–4. https://doi.org/10.1109/LSENS.2023.3316882  

[7] Du, H., Wei, H., Ni, P., Feng, Z., Sun, S., Jiang, M., & Xu, G. (2023). Millimeter Wave Radar Human 

Activity Recognition with a Contrastive Learning Network. 2023 International Conference on Microwave 

and Millimeter Wave Technology (ICMMT), 1–3. https://doi.org/10.1109/ICMMT58241.2023.10277131  

[8] Liu, R., Ramli, A. A., Zhang, H., Henricson, E., & Liu, X. (2022). An Overview of Human Activity 

Recognition Using Wearable Sensors: Healthcare and Artificial Intelligence. In B. Tekinerdogan, Y. Wang, 

& L.-J. Zhang (Eds.), Internet of Things – ICIOT 2021 (pp. 1–14). Springer International Publishing. 

https://doi.org/10.1007/978-3-030-96068-1_1  

[9] Muangprathub, J., Sriwichian, A., Wanichsombat, A., Kajornkasirat, S., Nillaor, P., & Boonjing, V. (2021). 

A Novel Elderly Tracking System Using Machine Learning to Classify Signals from Mobile and Wearable 

Sensors. International Journal of Environmental Research and Public Health, 18(23), 12652. 

https://doi.org/10.3390/ijerph182312652  

[10] Bhuiyan, Mohd. S. H., Patwary, N. S., Saha, P. K., & Hossain, Md. T. (2020). Sensor-Based Human Activity 

Recognition: A Comparative Study of Machine Learning Techniques. 2020 2nd International Conference on 

Advanced Information and Communication Technology (ICAICT), 286–290. 

https://doi.org/10.1109/ICAICT51780.2020.9333470  

[11] Khan, R., Abbas, M., Anjum, R., Waheed, F., Ahmed, S., & Bangash, F. (2020). Evaluating Machine 

Learning Techniques on Human Activity Recognition Using Accelerometer Data. 2020 International 

Conference on UK-China Emerging Technologies (UCET), 1–6. 

https://doi.org/10.1109/UCET51115.2020.9205376  

[12] Meena, T., & Sarawadekar, K. (2023). Seq2Dense U-Net: Analyzing Sequential Inertial Sensor Data for 

Human Activity Recognition Using Dense Segmentation Model. IEEE Sensors Journal, 23(18), 21544–

21552. https://doi.org/10.1109/JSEN.2023.3301187  

[13] Teng, Q., Tang, Y., & Hu, G. (2023). RepHAR: Decoupling Networks With Accuracy-Speed Tradeoff for 

Sensor-Based Human Activity Recognition. IEEE Transactions on Instrumentation and Measurement, 72, 

1–11. https://doi.org/10.1109/TIM.2023.3240198  

[14] Yang, P., Yang, C., Lanfranchi, V., & Ciravegna, F. (2022). Activity Graph Based Convolutional Neural 

Network for Human Activity Recognition Using Acceleration and Gyroscope Data. IEEE Transactions on 

Industrial Informatics, 18(10), 6619–6630. https://doi.org/10.1109/TII.2022.3142315  

[15] Gao, W., Zhang, L., Huang, W., Min, F., He, J., & Song, A. (2021). Deep Neural Networks for Sensor-Based 

Human Activity Recognition Using Selective Kernel Convolution. IEEE Transactions on Instrumentation 

and Measurement, 70, 1–13. https://doi.org/10.1109/TIM.2021.3102735  

[16] Ishimaru, S., Hoshika, K., Kunze, K., Kise, K., & Dengel, A. (2017). Towards reading trackers in the wild: 

Detecting reading activities by EOG glasses and deep neural networks. 704–711. 

https://doi.org/10.1145/3123024.3129271  

https://doi.org/10.24425/mms.2021.135999
https://doi.org/10.1145/2809695.2809708
https://doi.org/10.1109/ITNAC46935.2019.9078016
https://doi.org/10.1109/TPAMI.2022.3183112
https://doi.org/10.1109/JSYST.2023.3293482
https://doi.org/10.1109/LSENS.2023.3316882
https://doi.org/10.1109/ICMMT58241.2023.10277131
https://doi.org/10.1007/978-3-030-96068-1_1
https://doi.org/10.3390/ijerph182312652
https://doi.org/10.1109/ICAICT51780.2020.9333470
https://doi.org/10.1109/UCET51115.2020.9205376
https://doi.org/10.1109/JSEN.2023.3301187
https://doi.org/10.1109/TIM.2023.3240198
https://doi.org/10.1109/TII.2022.3142315
https://doi.org/10.1109/TIM.2021.3102735
https://doi.org/10.1145/3123024.3129271


H. Rong et al.: A MULTI-SCALE TIME SEGMENTS ATTENTION MECHANISM FOR SENSOR-BASED HUMAN ... 

 

[17] Yao, S., Hu, S., Zhao, Y., Zhang, A., & Abdelzaher, T. (2017). DeepSense: A Unified Deep Learning 

Framework for Time-Series Mobile Sensing Data Processing (arXiv:1611.01942). arXiv. 

https://doi.org/10.48550/arXiv.1611.01942  

[18] Zhang, J., Liu, Y., & Yuan, H. (2023). Attention-based Residual BiLSTM Networks for Human Activity 

Recognition. IEEE Access, PP, 1–1. https://doi.org/10.1109/ACCESS.2023.3310269  

[19] Ding, W., Abdel-Basset, M., & Mohamed, R. (2023). HAR-DeepConvLG: Hybrid deep learning-based 

model for human activity recognition in IoT applications. Information Sciences, 646, 119394. 

https://doi.org/10.1016/j.ins.2023.119394  

[20] Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-Excitation Networks. 2018 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, 7132–7141. https://doi.org/10.1109/CVPR.2018.00745  

[21] Duan, F., Zhu, T., Wang, J., Chen, L., Ning, H., & Wan, Y. (2023). A Multitask Deep Learning Approach 

for Sensor-Based Human Activity Recognition and Segmentation. IEEE Transactions on Instrumentation 

and Measurement, 72, 1–12. https://doi.org/10.1109/TIM.2023.3273673  

[22] Woo, S., Park, J., Lee, J.-Y., & Kweon, I. S. (2018). CBAM: Convolutional Block Attention Module. In V. 

Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer Vision – ECCV 2018 (pp. 3–19). Springer 

International Publishing. https://doi.org/10.1007/978-3-030-01234-2_1  

[23] Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, 

I. (2017, June 12). Attention is All you Need. Neural Information Processing Systems.  

[24] Lu, L., & Deng, T. (2023). A Method of Self-Supervised Denoising and Classification for Sensor-Based 

Human Activity Recognition. IEEE Sensors Journal, 23(22), 27997–28011. 

https://doi.org/10.1109/JSEN.2023.3323314  

[25] Mekruksavanich, S., Jantawong, P., Phaphan, W., & Jitpattanakul, A. (2024). Hybrid Attention with CNN-

BiLSTM and CBAM for Efficient Wearable Activity Recognition. 2024 Joint International Conference on 

Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, 

Computer and Telecommunications Engineering (ECTI DAMT & NCON), 572–576. 

https://doi.org/10.1109/ECTIDAMTNCON60518.2024.10480050  

[26] Wang, Y., Xu, H., Liu, Y., Wang, M., Wang, Y., Yang, Y., Zhou, S., Zeng, J., Xu, J., Li, S., & Li, J. (2023). 

A Novel Deep Multifeature Extraction Framework Based on Attention Mechanism Using Wearable Sensor 

Data for Human Activity Recognition. IEEE Sensors Journal, 23(7), 7188–7198. 

https://doi.org/10.1109/JSEN.2023.3242603  

[27] Zheng, G. (2021). A Novel Attention-Based Convolution Neural Network for Human Activity Recognition. 

IEEE Sensors Journal, 21(23), 27015–27025. https://doi.org/10.1109/JSEN.2021.3122258  

[28] Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2013). A Public Domain Dataset for Human 

Activity Recognition using Smartphones. The European Symposium on Artificial Neural Networks.  

[29] Reiss, A., & Stricker, D. (2012). Introducing a New Benchmarked Dataset for Activity Monitoring. 2012 

16th International Symposium on Wearable Computers, 108–109. https://doi.org/10.1109/ISWC.2012.13  

[30] Kwapisz, J. R., Weiss, G. M., & Moore, S. (2011). Activity recognition using cell phone accelerometers. 

SIGKDD Explor., 12, 74-82. https://doi.org/10.1145/1964897.1964918  

[31] Li, Y., Wu, J., Fang, A., & Dong, W. (2023). Temporal-Spatial Dynamic Convolutional Neural Network for 

Human Activity Recognition Using Wearable Sensors. IEEE Transactions on Instrumentation and 

Measurement, PP, 1–1. https://doi.org/10.1109/TIM.2023.3279908  

[32] Zhang, N., Song, Y., Fang, D., Gao, Z., & Yan, Y. (2024). An Improved Deep Convolutional LSTM for 

Human Activity Recognition Using Wearable Sensors. IEEE Sensors Journal, 24(2), 1717–1729. 

https://doi.org/10.1109/JSEN.2023.3335213  

  

https://doi.org/10.48550/arXiv.1611.01942
https://doi.org/10.1109/ACCESS.2023.3310269
https://doi.org/10.1016/j.ins.2023.119394
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/TIM.2023.3273673
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1109/JSEN.2023.3323314
https://doi.org/10.1109/ECTIDAMTNCON60518.2024.10480050
https://doi.org/10.1109/JSEN.2023.3242603
https://doi.org/10.1109/JSEN.2021.3122258
https://doi.org/10.1109/ISWC.2012.13
https://doi.org/10.1145/1964897.1964918
https://doi.org/10.1109/TIM.2023.3279908
https://doi.org/10.1109/JSEN.2023.3335213


Metrol. Meas. Syst., Vol. 32 (2025), No. 1 

DOI: 10.24425/mms.2025.152778 

 

 

Hailong Rong received the B.E. degree 

in automation and the M.E. degree in 
pattern recognition and intelligent 

systems from Northeastern University, 

Shenyang, China, in 2003 and 2006, 
respectively, and the Ph.D. degree in 

control theory and engineering from 

Southeast University, Nanjing, China, in 
2010. He is currently with the School of 

Mechanical Engineering and Rail 

Transit, Changzhou University, 
Changzhou, China. His research interests are attitude tracking and 

pattern recognition based on magnetic and inertial measurement 

units. 
 

Hao Wang obtained a Bachelor's degree 

in Electrical Engineering and 
Automation from Changzhou 

University in 2021. He is currently 

pursuing a Master's degree in 
Mechanical and Electronic Engineering 

from the School of Intelligent 

Manufacturing Industry at Changzhou 
University. He mainly engages in 

research related to inertial sensors. 

 
 

Xiaohui Wu received his Bachelor's 

degree in Electrical Engineering and 
Automation from Anhui University of 

Technology in 2021. He is currently 

pursuing his master's degree in the 
School of Mechanical Engineering and 

Railway Transportation at Changzhou 

University, China. His research interests 
are deep learning-based IMU attitude 

estimation.

Tianlei Jin received his bachelor's 

degree in Electrical Engineering 
automation from Linyi University in 

2021. He is currently studying for a 

Master's degree in Mechanical 
Engineering and Rail Transportation at 

Changzhou University, China. His 

research interests are gyroscopic noise 
reduction 

 

 
 

Ling Zou received the Ph.D. degree in 

control science and control engineering 
from Zhejiang University, Hangzhou, 

China, in 2004. She is currently a 

professor with the School of 
Microelectronics and Control 

Engineering, Changzhou University,  

Changzhou, China. Her research 
interests are control engineering, 

biomedical signal processing, and 

pattern recognition. 

 


