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Abstract 

Induction motors (IMs) are the most widely used electrical machines in industrial applications. However, they are 

subject to various mechanical and electrical faults. Eccentricity faults are among the common mechanical faults 

of IMs. This study compares the performance of four commonly used ML methods, including k-nearest neighbours 

(k-NN), decision tree (DT), support vector machine (SVM), and random forest (RF) along with the statistical 

features in detecting eccentricity faults of IMs with an automated machine learning (AutoML) model. The aim of 

using AutoML in this study is to fully automate the process of detection of eccentricity faults of IMs by selecting 

the classifier with the highest accuracy rate and shortest computation time along with the most effective feature(s). 

The eccentricity fault analyzed in this study was experimentally implemented in the laboratory. Three-axis 

vibration signals were collected for healthy and eccentricity faulty IM. The proposed study preprocesses the three-

axis vibration signals to determine the statistical features that are used as input to the ML methods. The proposed 

study offers the best ML method among the four studied algorithms and the need for expert knowledge of ML and 

eccentricity fault detection. The proposed AutoML model offers the DT method along with the z-axis rms feature 

for the highest accuracy rate and the shortest computation time in detecting the eccentricity fault. 

Keywords: Induction motors, eccentricity faults, machine learning techniques, fault detection, vibration analysis, 

AutoML. 

1. Introduction 

Electrical motors are the most widely used electrical machines in industrial applications. 

Induction motors (IMs) are the most popular electrical motors. IMs are preferred due to their 

low cost, high reliability, and simplicity. However, IMs are not free from faults despite their 

advantages. Unexpected faults of IMs can lead to interruptions in production lines, significant 

financial losses, and reduced revenues. The accurate detection and diagnosis of faults of IMs 

prevent undesired results and long downtimes [1]. The faults of the IM can be broadly classified 

into mechanical and electrical. The mechanical faults of IMs include air gap eccentricity, 

misalignment, bearing faults, and gearbox-related faults. The electrical faults are related to the 

stator and rotor. Stator-related faults consist of open-circuit, short-circuit, and insulation failure, 

while rotor-related faults consist of broken rotor bars and broken or cracked end-rings. There 

are various surveys on the distribution and root cause of faults of IMs [2–4]. These surveys 

show that the distribution and root cause of faults various with the power rating and the supply 

voltage of IMs. The distribution of the faults of 0.75 kW to 150 kW IMs is given in Fig. 1 [4]. 

Eccentricity faults occur due to an imbalanced distance in the air gap between the rotor and 

stator. Due to the short air-gap distance of IMs, the changes originating from eccentricity in the 

air gap are more important than in other machines. Even though the percentage of eccentricity 
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faults is comparatively lower than the percentage of other faults of IMs, the eccentricity faults 

may lead to other types of faults, such as bearing faults and bending of the motor shaft, which 

may lead to excessive vibration and increased temperature. In addition, the rotor may rub the 

stator and damage the lamination and windings [5–7]. Therefore, this study focuses on the 

detection of eccentricity faults. 

  

Fig. 1. Distribution of faults of IMs. 

The fault diagnosis methods of IMs can be classified as model-based, signature-extraction-

based, and knowledge-based. The model-based methods are based on the mathematical models 

of IMs. The signature-extraction-based methods extract the relevant signatures from monitoring 

signals. The knowledge-based methods are based on ML models used in this study. 

The most widely utilized monitoring signals for detecting faults of IMs include stator 

current, voltage, vibration, air-gap torque, angular speed, instantaneous power, and magnetic 

flux signals. The monitoring signals can be processed in the time-domain, frequency-domain 

[8, 9], or time-frequency [10–13] domains to detect the faults of IMs. Statistical features such 

as rms, crest factor, kurtosis, spectral kurtosis, skewness, peak value, p2p value, shape factor, 

impulse factor, and clearance factor are employed in the time-domain analysis to assess the 

health of IMs [14]. The frequency-domain methods provide successful results in the analysis of 

stationary signals. Nevertheless, they are ineffective in analysing nonstationary signals where 

the spectrum and period of the signals change. Time-frequency analysis methods are preferred 

in the analysis of nonstationary signals.  

The Fast Fourier transform (FFT) based methods are among the commonly used frequency-

domain-based signal processing methods [15]. Continuous wavelet transform (CWT) [16], 

empirical mode decomposition (EMD) [17, 18], discrete wavelet transform (DWT) [19, 20], 

and wavelet packet transform (WPT) [21] and their variants are commonly used time-frequency 

domain methods. Time-domain methods use statistical features along with ML models in the 

detection of faults. 

An experimental comparison of various ML-based classification methods for detecting rotor 

faults of IMs is presented in [22]. The study uses time-domain and frequency-domain features 

of current signals. The performance of the study is evaluated by processing of the stator current 

signals of an IM under various loading levels based on ML classification methods. A 

comprehensive review of condition monitoring of IMs based on ML methods is presented in 

[23].  

The widely used ML methods are k-NN, DT [24], SVM [25], RF methods [26], principal 

component analysis (PCA) [27], artificial neural networks (ANN) [28–30], and singular value 

decomposition (SVD) [31]. 

The use of ML for a specific detecting or classification task requires expert knowledge in 

the field of the task and ML to choose the appropriate classifier and the best feature(s) with 

respect to accuracy rate and computation time. Manually selecting the appropriate classifier and 

the best feature(s) for the detection of faults of IMs with various signals requires expert 

knowledge and longer computation time.  
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The proposed study compares the performance of four ML methods, including k-NN, DT, 

SVM, and RF, using the AutoML model to detect the eccentricity faults of IMs using three-axis 

vibration signals concerning the accuracy rate and computation time along with the statistical 

features. 

The contribution of the proposed study is to determine the most effective feature(s) and the 

ML method with the highest accuracy rate and shortest computation time automatically and 

reduce the need for expert knowledge in fault detection.  

The paper is organized as follows: Section 2 briefly reviews the classification methods and 

data preprocessing. Sections 3 and 4 describe the implementation of the eccentricity faults and 

data collection system, respectively. The details of the proposed AutoML model are given in 

Section 5. The results and the performance of the proposed method are described in Section 6. 

The paper concludes with Section 7. 

2. The classification methods and data preprocessing 

Machine learning methods have been widely used in detecting and classifying faults of IMs 

in recent years [32]. ML methods are mainly preferred in analysing vibration signals (which are 

nonstationary) for the detection of faults of IMs. 

2.1. The classification methods 

Four different ML-based classification methods, including k-NN, DT, SVM, and RF, are 

used in this study. Each of these methods is described below. 

2.1.1. K-nearest neighbours 

The k-NN algorithm is a supervised ML algorithm. Recently, it has been widely used to 

solve classification problems. The k-NN algorithm is a nonparametric classifier. It does not 

need a training model for implementation and is therefore referred to as a lazy learner. Each 

dataset is labelled based on its n-classifications. The method evaluates the similarity among 

new and present datasets. The k parameter, generally an odd number, is the number of nearest 

neighbours [33]. A sample classification process of the k-NN algorithm structure is given in 

Fig. 2. The k parameter of the k-NN algorithm is tuned by an iterative search method. The 

search method is performed on a randomly selected twofold separate dataset called train and 

test in each iteration. The k-NN classification tasks are performed for both the test and training 

dataset separately by varying the value of k from 2 to 10, as shown in Fig. 3. The value of k is 

chosen as 3 based on the results given in Fig. 3. The new data class is determined by calculating 

the distance to its 3-nearest neighbours. Euclidean, Manhattan, and Minkowski are the distance 

methods used in k-NN. The Euclidean distance method is used in this study. The Euclidean 

distance can be calculated in (1) and (2). 

 

Fig. 2. A Sample classification process of k-NN algorithm. 
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 , (1) 

 , (2) 

where pi is the existing data point, qi is the new data point, n is the number of dimensions, and 

d is the Euclidean distance. 

 

Fig. 3. The determination of the k parameter in the k-NN classifier model in the proposed study. 

2.1.2. Decision tree 

Decision tree, a widely used classification algorithm in data mining and ML [24], reaches a 

decision and conclusion with a tree model. The tree model has nodes and branches. Branches 

are formed by the decisions made at the node. The last nodes of the tree are called leaf nodes. 

A classification label is assigned to the leaf nodes. Optimum points separate the classes. Figure 

4 shows the separation process of the classes in the DT algorithm. The location of the data based 

on the optimum points is evaluated with the DT. The classification is evaluated at the extreme 

point of the DT. DT naturally supports classification problems with more than two classes. The 

most commonly used measures for DT are the Entropy and Gini indexes given in (3) and (4) 

[34]. 

 

Fig. 4. A Sample of the separation process of the classes in the DT algorithm. 

  , (3) 

  , (4) 

where xi is the probability corresponding to n possible states. 

2.1.3. Support vector machine 

Support vector machine is a statistical learning theory-based, effective, and flexible 

supervised ML algorithm widely used in classifying, regression, and detecting outliers [35]. As 

can be seen from Fig. 5, SVM generates hyperplanes that separate the classes correctly. Support 
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vectors can be defined as the data points closest to the hyperplane. The location of the dividing 

line is determined based on data points. The optimal hyperplane (OH) is the decision plane that 

divides the different classes. Max. Margin is the maximum distance between support vectors of 

other classes (Fig. 5). The classes above the positive hyperplane (PH) belong to healthy, and 

those below the negative hyperplane (NH) belong to faulty (healthy class refers to healthy IM, 

faulty class refers to eccentricity faulty IM). The OH, PH, NH, and maximum margin can be 

calculated by (5). This study uses a support vector classifier (SVC) based on the SVM library. 

 

Fig. 5. A sample of decision plane that divides the different classes in SVM algorithm. 

  ,  

  , (5) 

  ,  

  ,  

where is the weight, is the data value, and b is the bias. 

2.1.4. Random forest 

Random forest is a tree-based ensemble learning method [36] that uses multiple decision 

tree structures to make decisions. Each node in the DT operates on a random subset of features 

to calculate the output. The structure of the RF classifier used in the proposed study is given in 

Fig. 6, and details of the RF can be found in [26]. 

 

Fig. 6. RF algorithm structure. 



E. Irgat, A. Ünsal: AN AUTOML BASED COMPARATIVE EVALUATION OF MACHINE LEARNING METHODS ... 

 

The parameters of classifiers, including k-NN, DT, SVC, and RF, used in the proposed study 

are given in Table 1. The values of the parameters were chosen by trial and error with respect 

to the optimum performance of classifiers. 

Table 1. Parameters of classifiers. 

Classifier Parameter Value 

k-NN k 3 

weights uniform 

algorithm auto 

metric euclidean 

DT max_depth 5 

SVC kernel linear 

RF n_estimators 10 

max_depth 5 

2.2. Data preprocessing 

At the data preprocessing stage, p2p, rms, skewness, kurtosis, crest factor and mean features 

are calculated and used as input to each ML classifier. Each of these features is given below. 

2.2.1. Peak to peak 

Peak-to-peak is the difference between the highest and the lowest value of the amplitude of 

a signal. In this study, the p2p value of the vibration signal is calculated and used as input to 

the classification methods. 

2.2.2. Root mean square 

Root mean square of a signal is called rms. The rms of a discrete signal or distribution with 

N samples is given in (6).  

  . (6) 

2.2.3. Skewness and kurtosis 

Skewness is a measure of symmetry in the distribution of a dataset. If the distribution of the 

dataset looks the same to the right and left of the center point, it is said to be symmetric. The 

term “positively skewed” or “right skewed” refers to a distribution concentrated to the left with 

its tail on the right side. If the distribution is concentrated to the right and with its tail on the 

left side, it is called a “negatively skewed” or “left skewed” distribution. If the skewness of the 

distribution is between -0.5 and 0.5, the results are called to be symmetrical. The data are highly 

skewed if the skewness is less than -1 or greater than 1. The skewness of a symmetrical 

distribution is 0. 

Kurtosis is a measure of outliers present in the distribution of a dataset. It detects whether a 

dataset has a light or heavy tail compared to a normal distribution. Heavy tails or outliers are 

common in datasets with a high kurtosis value. Low kurtosis datasets tend to have light tails or 

no outliers. The skewness (s) and kurtosis (k) values of a dataset or a signal (x) can be calculated 

as given in (7) and (8), respectively. 

  , (7) 

  , (8) 

where N is the total number of the samples, µ is the mean, and σ is the standard deviation. 
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2.2.4. Crest factor 

Crest factor of a signal is the ratio of the peak value of a signal to its rms value. It is a 

measurement of the extreme peaks of a signal. The crest factor (cf) of a signal (x) can be 

calculated by (9). 

  . (9) 

2.2.5. Mean 

Mean is the sum of the values of the N sample of a signal divided by the number of samples. 

It can be calculated as given in (10). 

  . (10) 

In this study, the rms, p2p, kurtosis, skewness, crest factor, and mean features of the three-

axis vibration signals of a three-phase, 3-kW, two-pole IM under 100% loading level are used 

as input to the k-NN, DT, SVM, and RF classifiers to detect the eccentricity fault. The 

implementation of the eccentricity fault of IM is given in the next section. 

3. Implementation of eccentricity fault 

Eccentricity faults occur in IMs due to an imbalanced distance in the air gap between the 

rotor and stator. Eccentricity faults are classified into static, dynamic, and mixed eccentricity 

[37]. The rotor and stator centers are not aligned in the static eccentricity.  

 

Fig. 7. Types of eccentricity: (a) healthy, (b) static eccentricity, (c) dynamic eccentricity, and (d) mixed 

eccentricity. 

The dynamic eccentricity fault indicates that the rotor and the stator centers are not aligned, 

and the air gap length varies as the rotor rotates. The rotor rotates around both the rotor and 

stator centers. The mixed eccentricity fault contains static and dynamic eccentricity faults, and 

the rotor rotates around a different center from the stator and rotor centers. The types of 

eccentricity faults are graphically illustrated in Fig. 7. 
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The eccentricity fault analyzed in the proposed study has been implemented by widening the 

housing of the bearings of the IM. The center of the rotation is shifted 0.2 mm by using bushings 

produced from a polylactic acid (PLA) filament by 3D printing. Figure 8 shows the dimensions 

of the designed bushings. The details of the implementation of the eccentricity faults are given 

in [38]. 

 

Fig. 8. Dimensions of the designed bushings. 

4. Data collection system 

A picture of the experimental test-bench and the schematics of the data collection system are 

given in Fig. 9 and Fig. 10, respectively [38, 39]. A two-pole, 3-kW IM was used in the 

experimental study. A 5-kVA synchronous generator and a variable resistive load were used to 

load the IM. A three-axis accelerometer (PCB356A31), along with an amplifier, was used to 

measure the vibration signals. The measured vibration signals were recorded by a National 

Instrument (NI) cDAQ 9174 data acquisition system through a NI 9227 module with a sampling 

frequency of 25 kHz. The data were collected in two test cases. In the first case, the vibration 

signals were recorded from the motor in healthy condition. In the second case, the vibration 

signals were recorded from the eccentricity faulty motor. The IM was loaded at 100% and 

running at 2850 rpm in both cases. 

Three-axis (x,y,z) vibration signals were recorded for 41 seconds by a sampling frequency 

of 25 kHz. The signals were divided into packages of 0.1seconds (2500 samples). Figure 11 

shows the z-axis normalized vibration signal with a duration of 0.1 seconds. The features of 

each package are calculated, and the results are used to compose a dataset of 410 rows. 

 

Fig. 9. Experimental test-bench. 
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Fig. 10. Schematic of the experimental test-bench. 

The p2p, rms, skewness, kurtosis, crest factor, and mean values of the signal were calculated 

for each row. A dataset with 820 rows (410 rows from healthy motor and 410 rows from 

eccentricity-faulty motor) representing these features was obtained. Seventy percent (70%) of 

the dataset was used for training, and 30% of the dataset was used for testing.  

 

Fig. 11. The z-axis vibration signal. 

5. AutoML  

The proposed AutoML model is given in Fig. 12. It is an automated solution to classification 

problems that reduce the manual efforts of experts in the field of fault detection of IMs. The 

aim of using AutoML in this study is to fully automate the process of detection of eccentricity 

fault of IMs by selecting the classifier with the highest accuracy rate and shortest computation 

time along with the most effective feature(s). In the detection process of faults of IMs it may 

not be necessary to use many statistical features which require long computational time. Some 

features may not contribute to the accuracy rate of the detection process of the faults. It may be 

necessary to detect and/or eliminate the statistical features in the training process that have not 

significant effect on the accuracy rate of the detection of faults manually in order to reduce the 

computational time. The proposed AutoML first detects the most effective feature(s). Then it 

uses these features in the testing process in order to reduce the computational time. Therefore, 
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using the proposed AutoML model reduces the overall computational time of the fault detection 

process. 

 

Fig. 12. Proposed AutoML model. 

 

Fig. 13. Z-axis confusion matrix (1: healthy, 2: faulty). 
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6. Results 

An AutoML model was used to diagnose the eccentricity fault of an IM based on three-axis 

vibration signals (Fig. 12). The AutoML model automatically selects the most effective 

statistical feature(s) (among p2p, rms, skewness, kurtosis, crest factor, and mean) and the 

classifier with the highest accuracy and shortest computation time. The fault detection module 

uses selected statistical feature(s) and classifier as input with the new dataset to detect 

eccentricity fault.  

A confusion matrix was used to assess the performance of each classifier (along with 

statistical features) run by the AutoML model. The confusion matrices of the classification ML 

methods of the vibration signals of the z-axis are given in Fig. 13. Label-1 describes the healthy 

motor, and Label-2 describes the eccentricity faulty motor. The results show that the rms feature 

provides the highest accuracy rate (100%) in all four classifiers. It can be seen from Fig. 13 that 

the k-NN algorithm predicted 97 of 123 data samples of healthy motors correctly, and 26 data 

samples were predicted incorrectly for the z-axis p2p feature. Out of 123 data samples of the 

eccentricity faulty motor, 95 were predicted correctly, and 28 were predicted incorrectly. Thus, 

the average accuracy of the k-NN model for the z-axis p2p feature is 78.0488%, as shown in 

Fig. 13. The accuracy rates of the other classifiers concerning statistical features (p2p, rms, 

skewness, kurtosis, crest factor and mean) can be seen from Fig. 14. 

 

Fig. 14. Accuracy rates of the four classifiers for all features. 

The proposed AutoML model asses the performance of four classifiers based on these results 

along with the computational time automatically.  

The results are given in Table 2 and Fig. 15. It can be seen from Table 2 that 100% accuracy 

is achieved in all classifiers for the rms feature on the x, y, and z-axis. The variation of the rms 

level of three-axis vibration signals (healthy and eccentricity faulty) with respect to time is 

shown in Fig. 16. The p2p and kurtosis features in the x-axis provide 100% accuracy in all 

classifiers. DT method with z-axis rms feature provides the highest accuracy rate and the 

shortest computation time.  
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Table 2. Accuracy rates and computation times. 

Classifiers k-NN DT SVC RF 

Acc. 

% 

Computation 

time (ms) 

Acc. 

% 

Computation 

time (ms) 

Acc. 

% 

Computation 

time (ms) 

Acc. 

% 

Computation 

time (ms) Axis Features 

x p2p 100.0 0.27599 100.0 0.41840 100.0 0.81929 100.0 6.45560 

rms 100.0 0.28550 100.0 0.55220 100.0 0.71800 100.0 6.20580 

skewness 98.78 0.48739 99.18 0.76020 99.59 2.51289 99.18 9.66030 

kurtosis 100.0 0.30470 100.0 0.57490 100.0 0.88449 100.0 6.66619 

crest factor 88.62 0.30919 87.80 0.61649 91.46 2.88339 89.02 7.32989 

mean 76.02 0.50439 76.83 0.84809 53.25 6.70240 77.24 7.42250 

y p2p 84.96 0.31549 84.55 0.49739 87.00 3.86299 85.37 7.61540 

rms 100.0 0.39599 100.0 0.50620 100.0 0.89520 100.0 6.63830 

skewness 98.78 0.29029 97.97 0.45840 98.78 1.36980 96.75 6.71940 

kurtosis 83.33 0.30259 86.59 0.55210 87.00 2.55489 86.18 7.06109 

crest factor 52.03 0.28500 56.10 0.71570 63.00 5.70450 61.38 6.96750 

mean 70.73 0.29349 73.17 0.48080 45.12 5.33049 73.98 7.17030 

z p2p 78.05 0.27829 78.46 0.54360 80.49 3.98959 80.08 6.75470 

rms 100.0 0.28330 100.0 0.22620 100.0 0.83749 100.0 6.04900 

skewness 53.25 0.26860 58.94 0.51310 52.44 5.50910 56.10 6.89360 

kurtosis 85.37 0.28739 84.96 0.44789 84.96 2.59359 85.77 6.84169 

crest factor 71.95 0.28320 73.58 0.60120 71.95 4.06170 73.98 7.40819 

mean 64.23 0.27590 64.63 0.55240 53.66 5.34979 65.04 6.88089 

 

 

Fig. 15. Computation times of the classifiers with respect to features. 

 

Fig. 16. The rms level of three-axis vibration signals. 
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7. Conclusions 

Eccentricity faults are among the common mechanical faults of IMs. There are various 

methods of monitoring and detecting eccentricity faults of IMs. ML methods are among the 

most effective detection methods. This study proposed an AutoML model that compares the 

performance of four ML methods, including k-NN, DT, SVC, and RF, in the detection of 

eccentricity faults of IMs. 

The performance of each ML method (as given in Fig. 15) in detecting eccentricity faults 

was compared by the proposed AutoML model. The classifier with the highest accuracy and 

the shortest computation time is selected automatically by the proposed AutoML method. The 

proposed method offers the best ML method with appropriate statistical feature(s) among the 

four studied algorithms and reduces the need for expert knowledge of ML and eccentricity fault 

detection.  

The results show that the x-axis p2p, x-axis rms, x-axis kurtosis, y-axis rms and z-axis rms 

features of the vibration signals provide the highest accuracy rates (100%) in all ML methods. 

The y-axis mean feature provides the lowest accuracy rate in SVC. The SVC classifier gives 

higher accuracy rates in the x-axis crest factor, y-axis kurtosis, and y-axis crest factor in all ML 

methods, as shown in Fig. 14. It can also be seen that the accuracy rate of the RF method is 

higher in the x-axis mean, y-axis mean, and z-axis mean features in all ML methods. The 

proposed AutoML model offers DT method and z-axis rms feature as input to the fault detection 

module in this study for the highest accuracy rate and the shortest computation time in the 

detection of eccentricity fault. 

Even though the proposed AutoML model is used for the detection of eccentricity faults of 

IM by using four ML methods, it can be used to detect other faults of IMs, including bearing 

faults, misalignment, and broken rotor bars with other ML methods. In this study, vibration 

signals are used for the detection of the faults. The proposed model can also be used with other 

signals, including current, voltage, torque, etc. 
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