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Abstract 

Inductive loop (IL) sensors, which are permanently installed in the road, output signals for the evaluation of vehicle 

magnetic profiles (VMPs) as vehicles pass over them. VMPs are acquired using a multi-frequency impedance 

measurement (MFIM) system equipped with advanced electronic, signal processing, and data management 

capabilities. The vehicle speed is calculated by measuring the time shift (delay, lag) between VMPs obtained from 

two distant IL sensors. The cross-correlation sequence (CCS) estimate is a widely accepted method for estimating 

time shifts that are integer multiples of the sampling period, i.e., the time resolution of the CCS is limited by the 

sampling period. In this paper, we present a fully operational MFIM system equipped with two wide and two slim 

IL sensors. We apply the Discrete Fourier Transform (DFT) to estimate fractional time shifts, i.e. we obtain a time 

resolution higher than the sampling period. Field measurement signals demonstrate that the proposed application 

of the DFT for fractional shift estimation offers higher accuracy, lower computational complexity, and better noise 

immunity compared to the CCS-based estimation. For short-duration signals, the DFT-based shift estimation is 

unbiased, while the CCS is a biased time shift estimator. 

Keywords: cross-correlation sequence, discrete Fourier Transform, fractional delay FIR filter, fractional shift 

estimation, inductive loop, multi-frequency impedance measurement, time shift, vehicle magnetic profile. 

1. Introduction 

In this paper, we present a multi-frequency impedance measurement (MFIM) system 

equipped with inductive-loop technology [1-3] and describe a vehicle speed computation 

algorithm based on the DFT fractional shift estimation that outperforms the widely used cross-

correlation (CC) method. 

The inductive-loop technology has gained significant popularity in road traffic 

measurements [1-8]. A recorded vehicle magnetic profile (VMP) [1] is used for various 

applications, such as speed and axle-to-axle distance measurement [2], load estimation [3], and 

advanced vehicle classification using machine learning [4, 5], and neural networks [6, 7]. Road 

traffic measurement systems also utilize anisotropic magneto-resistive sensors, e.g. [9-14]. 

However, regardless of the type of sensor used, the speed is calculated based on the estimated 

time shift between two signals. The speed is further used to determine various parameters such 

as the axle-to-axle distance or vehicle length, which are key inputs for classification algorithms 

[5, 15, 16]. Estimated speed and vehicle class are also utilized in free-flow traffic models for 

planned infrastructure development [17]. 

Therefore, the time shift is a fundamental measurement in road traffic measurement systems. 

Time delay estimation is a basic problem in signal processing, e.g. [18, 19] with a wide range 

of applications including traffic measurements and others [11, 14, 20-29]. The main difficulty 

in road measurement applications is the impulse-like nature of the signals of interest, which are 

of short duration, making reliable correlation estimates practically unattainable. For instance, 
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techniques such as segment averaging [19] are not applicable. The VMPs analyzed in this paper 

contain approximately one oscillation, similar to the magnetic field readings in [9], while the 

magnetic field signals analyzed in [11] have around three oscillations. 

For correlation-based shift estimation, an insufficiently high sampling frequency limits the 

resolution [20-22], and the positioning of the maximum can be problematic for noisy signals 

and flat cross-correlation functions. Some remedies to improve the performance of the 

correlation include: various interpolation techniques, such as parabolic fit [23], normalized 

cross-correlation [24], weighted cross-correlation [25], modified cross-correlation functions 

[26], and a combination of state-machine detection and cross-correlation detection [27]. 

The comprehensive investigation of several shift estimation methods conducted in [11] 

confirmed that the CC method for speed evaluation is the most accurate in road traffic 

measurements, but at the expense of high computational complexity. The CC resolution of the 

time shift estimation is limited to the sampling period; therefore, high sampling rates are 

necessary for high accuracy. The CC can be efficiently computed using the Fast Fourier 

Transform (FFT) algorithm, e.g., [9], however, the measurement signals still need to be heavily 

oversampled to achieve good time resolution.  

In general, the low-oscillation and short-duration nature of VMPs introduce bias in the CC-

based shift estimation. We utilize the Discrete Fourier Transform (DFT) for fractional shift 

estimation and not as an algorithm for fast CC computation. We demonstrate that only a few 

highest magnitude DFT bins are sufficient for fractional shift estimation, and thus the FFT 

algorithm, that computes all DFT bins, is not used. For the considered VMPs, the DFT is more 

accurate and simpler to compute than the CC. The proposed DFT-based shift estimation has the 

following advantages over the existing standard CC-based approach: 1) improved time 

resolution up to the fraction of a sampling period, 2) unbiased shift estimation for low-

oscillation signals, and 3) easy rejection of bandpass disturbances in the frequency domain. 

Thanks to fractional time resolution, reduced sampling frequencies can be used in the MFIM 

system. This results in reduced hardware requirements for data management, such as slower 

ADCs (Analog-to-Digital Converter), and also decreases the consumption of computational 

power. 

The paper is organized as follows: Section 2 briefly introduces the MFIM system for the 

VMP assessment. Section 3 presents the theoretical framework for speed computation, 

including the definition of the signal model, descriptions of the CC and the DFT algorithms, 

and the fractional FIR filter used to undo the estimated shift in field signals and to generate 

artificial test signals. The Results section highlights the advantages of the DFT over the CC for 

shift estimation. The final section concludes the paper. 

2. Vehicle magnetic profile 

The developed MFIM system for VMP acquisition [1-3] is depicted in Fig. 1. For a single 

IL sensor it operates as follows. An impedance is measured, by definition, as the ratio of 

complex voltage to complex current. However, a voltage excitation source contains a sum of 

three sinusoidal waves with different frequencies. The complex voltages and currents are 

obtained from the outputs of quadrature demodulators. A transimpedance amplifier is used to 

convert a current signal into voltage. The voltages are converted to digital form using 

a sampling frequency of 400 kHz and a resolution of 16 bits. Demodulation is carried out in 

software, simultaneously for all three excitation frequencies, using perfectly flat-top filters 

[1, 30] to prevent amplitude errors. The bandwidth of the filters is chosen to maintain the 

necessary dynamics of the current and voltage signals for road speeds up to 150 km/h. Finally, 

the VMPs are downsampled to a 1 kHz sampling frequency. 
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The developed MFIM system was operating on the internal road at AGH University of 

Krakow. Figure 2 shows exemplary VMP field recordings captured simultaneously by two 

processing channels for IL1 and IL3 sensors. R-VMPs represent the real part of the impedance 

of the IL sensor, while X-VMPs represent the imaginary component of the impedance. Each 

vehicle induces changes in both impedance components. The real component is often omitted 

in the literature on IL sensors due to its generally lower value. VMPs obtained at a low 

frequency (black) exhibit a low amplitude, while at a higher frequency, they demonstrate a 

higher amplitude (red). Due to the 1.5 m distance between IL1 and IL3, we observe VMP 

sequences that are shifted in time. 

 

Fig. 1. MFIM system for VMP recording (left), IL sensors layout with dimensions (right). 

 

Fig. 2. Exemplary VMPs recorded by IL1 and IL3. R-VMP–resistance (left), X-VMP–reactance (right). 

Excitation frequency is the lowest, the middle and the highest for black, blue and red line, respectively. 

 

Fig. 3. Normalized VMPs from Fig. 2. 
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Fig. 4. Normalized X-VMPs for two cars driving in two directions: Mercedes GLA200 (upper row),  

Hyundai ix35 (bottom row). Direction from IL1 to IL3 (left column), direction from IL3 to IL1 (right column). 

The VMPs are measured simultaneously on three frequencies for increasing the robustness 

against electromagnetic interference (EMI) that has a bandpass frequency spectrum, and rarely 

strongly affects all three excitations at ones. In the absence of the EMI all three VMPs are very 

similar in shape, especially |X-VMP|, and after normalization they overlap, as shown in 

Figs. 3, 4. The normalized R-VMPs overlap less than the X-VMPs. Further, to determine the 

vehicle speed, X-VMPs are used. Figure 4 shows the normalized X-VMP for two passenger 

cars moving in two directions, which results in a different order of the X-VMP sequences in 

time. The VMPs depicted in Fig. 4 are representative of the entire class of VMP signals 

measured in our MFIM system and are therefore used as test signals in the Results section. 

3. Time delay estimation 

3.1. Signal model 

Ideally, the discrete-time VMP acquired by the IL1 sensor, see Fig. 1, and denoted by p1[n], 

should be a delayed version of VMP p3[n] recorded by the IL3 sensor. However, due to real-

world imperfections, this relationship is more complicated. Both VMPs are observed in the 

presence of slightly different additive disturbances. The gain in both channels is not exactly the 

same, and the shapes of both VMPs are also slightly different. We assume the following relation 

between the two VMPs 

 𝑝1[𝑛] = 𝑎𝑝3[𝑛 − 𝑛𝑠] + 𝜀[𝑛], (1) 

where n=0,1,…,N-1 and N is the number of samples, a>0 is a gain coefficient (in the considered 

application, close to 1 thanks to signal normalization before shift estimation, see Fig. 4), ε[n] is 

a disturbance representing measurement noise of both VMPs and shape inconsistencies between 

them, and finally ns is a shift to be estimated that can be integer or fractional. 

3.2. CCS-based time delay estimation 

The integer part of the shift ns can be estimated by finding the maximum of the cross-

correlation sequence (CCS) estimate defined, between two arbitrary length N signals x[n] and 

y[n], by 

 𝑅𝑥𝑦[𝑚] = ∑ 𝑥[𝑛 + 𝑚]𝑦[𝑛]𝑁−𝑚−1
𝑛=0 , (2) 



Metrol. Meas. Syst., Vol. 31 (2024), No. 4 

DOI: 10.24425/mms.2024.152048 

with m=-(N-1),…,-1,0,1,…,N-1. Then 

 round(𝑛𝑠) = 𝑚𝑚𝑎𝑥, (3) 

where mmax is a shift (lag) for the maximum value of the CCS between VMPs p1[n] and p3[n]. 

The time resolution of the CCS-based shift estimation (3) is limited to the length of the sampling 

period as indicated by the rounding off function in (3). 

Figure 5 (left) depicts the CCS estimate (2) between p3[n] and p1[n] for normalized X-VMPs 

in Fig. 4 (Mercedes GLA200, direction from IL3 to IL1, middle frequency). For this case the 

highest difference between the CCS-based, and DFT-based shift estimation is observed. In the 

considered application, see Fig. 1, time delay has always known sign, thus it is sufficient to 

apply (2) either only for m>0 or for m<0. 

 

 

Fig. 5. The CCS estimate (2) between p3[n] and p1[n] (left), see Fig. 4, and the fragment of the magnitude DFT 

of p1[n] (4) (right). 

3.3. DFT-based time delay estimation 

The DFT X[k] of an arbitrary length N signal x[n] is defined as [14] 

 𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−𝑗
2𝜋

𝑁
𝑘𝑛𝑁−1

𝑛=0 , (4) 

and k=0,1,…,N-1. The DFT has the property of circular shift of the sequence [14]. Let us 

assume that p1[n] is a circularly delated version of p3[n], as denoted by tilde in (5) 

 𝑝1̃[𝑛] = 𝑝3̃[𝑛 − 𝑛𝑠], (5) 

then the DFT spectra of p1[n] and p3[n] denoted by P1[k] and P3[k] obey the following relation 

 𝑃1[𝑘] = 𝑒−𝑗
2𝜋

𝑁
𝑘𝑛𝑠𝑃3[𝑘]. (6) 

The delay is estimated as 

 𝑛𝑠
𝑘 = −

𝑁

2𝜋𝑘
𝑎𝑛𝑔𝑙𝑒(𝑃1[𝑘]conj(𝑃3[𝑘])), 𝑘 ≠ 0, (7) 

where the function angle() returns the phase angle of a complex number, and k denotes the DFT 

bin selected for estimation. In (7) we prefer to use multiplication instead of division, i.e. 

𝑎𝑛𝑔𝑙𝑒(𝑃1[𝑘]/(𝑃3[𝑘])), because division is more susceptible to disturbances, especially when 

the denominator is small. 

Fig. 5 (right) depicts the fragment of the magnitude DFT spectrum of p1[n]. It is observed 

that the DC component is completely removed by subtracting the mean value in the time 

domain, and that the DFT bin with k=1 has the highest magnitude. For a considered class of 
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VMP signals the DFT bin with k=1 is always the highest one and it is the first choice to be used 

in (7). However, bins k=2 and k=3 are also valid to be used in (7). The delay can also be 

estimated by a combination of several 𝑛𝑠
𝑘, e.g. the mean value 

 𝑛𝑠
1,2 =

𝑛𝑠
1+𝑛𝑠

2

2
, (8) 

 𝑛𝑠
1,2,3 =

𝑛𝑠
1+𝑛𝑠

2+𝑛𝑠
3

3
. (9) 

In case of disturbance with a similar power spread in DFT bins k=1,2,3 the bin with the 

highest magnitude has the highest signal to noise ratio. The DFT bins with higher indices must 

not be used in (7) as they are caused by the spectral leakage. 

The delay estimated by (7) may be fractional, thus the time resolution is not limited by the 

sampling period length, as it is in the case of the CCS-based estimation (3). According to (7) it 

is enough to compute only 2 DFT bins for delay estimation, but (8) and (9) require 4 and 6 DFT 

bins, respectively. 

3.4. Fractional delay FIR filter 

The fractional delay FIR filter is used in the next section to compensate for the estimated 

shift in order to evaluate the quality of shift estimation and to generate test signals with known 

shift. 

Equation (6) expresses a filtration in the frequency domain, i.e. 𝑃1(𝜔) = 𝐻(𝜔)𝑃3(𝜔), where 

ω denotes the frequency in radians. Theoretical impulse response h[n] of an ideal delay filter 

𝐻(𝜔) = 𝑒−𝑗𝜔𝑛𝑠 is computed by the inverse discrete time Fourier transform (DTFT) [31] 

 ℎ[𝑛] =
1

2𝜋
∫ 𝑒−𝑗𝜔𝑛𝑠𝑒𝑗𝜔𝑛𝑑𝜔

𝜋

−𝜋
= {

sin(𝜋(𝑛−𝑛𝑠))

𝜋(𝑛−𝑛𝑠)
, 𝑛 − 𝑛𝑠 ≠ 0   

1,                 𝑛 − 𝑛𝑠 = 0
. (10) 

The finite impulse response (FIR) filter can be designed by (10) by the window method [31]. 

Figure 6 depicts an impulse response of a delay filter designed with the rectangular window 

for ns=152.4159 sampling times, i.e. the case in Fig. 5 (right). The impulse response has 501 

coefficients. The frequency response of the FIR filter designed with the rectangular, the Hann, 

the Hamming and the Blackman window is presented in Fig. 7. Figure 7 (left) depicts the 

magnitude error, and Fig. 7 (right) depicts the shift introduced by the filter. It is observed that 

the filter with the Blackman window has the highest accuracy in this comparison, and thus it is 

further used in the section Results. 

The selected time window determines the frequency response of the designed filter. The 

rectangular window has the highest sidelobes and the narrowest main lobe, resulting in the filter 

having the highest ripples in the frequency response and the narrowest transition band near the 

frequency of π radians. All other windows have better attenuation of the sidelobes, which 

translates to reduced ripples in the frequency response. It is observed in Fig. 7 that the frequency 

response of the filter using the Blackman window is practically flat. However, windows with 

even higher attenuation of the sidelobes, see e.g. [31, 32], can also be used, as well as other 

existing methods for fractional delay filter design, e.g. [33]. 
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Fig. 6. The impulse response of a delay filter designed with the rectangular window for ns=152.4159. 

 

Fig. 7. Magnitude error (left) and the delay (right) of the FIR filter designed with different windows (see legend). 

Results for the Hamming window overlap the results for the Hann window. 

4. Results 

In this section, we illustrate the capability of the proposed DFT-based algorithm for 

estimating fractional time delays and compare the results with the CCS-based approach. The 

presented results were obtained using a real-world signals recorder by the MFIM system 

described in Section II. Figure 4 shows field measurements of the exploited VMPs p1[n] and 

p3[n] obtained in the designed MFIM system. All VMPs are initially preprocessed, i.e., prepared 

for delay estimation. Preprocessing involves downsampling to 1 kHz, amplitude normalization, 

and removing the mean value. It is observed that VMPs are similar to each other, but not 

identical. Acquired VMPs are pulse-like signals, i.e., they do not oscillate. 

4.1. Implementational considerations 

Figure 5 (left) shows the CCS estimate (2) between p3[n] and p1[n]. The maximum CCS 

occurs at mmax=-148, resulting in a time delay of -148 ms and a speed of 10.14 m/s (36.49 km/h). 

If we assume that the CCS has a smooth global maximum and the driving direction is known, 

the following procedure can be used to find this maximum. Start by computing three successive 

values of CCS for the most frequently observed speed in the MFIM system, e.g. 35 km/h. If the 

middle value is the highest, then it is a searched global maximum. Otherwise, if the CCS 
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sequence is increasing in value, compute the next value of the CCS until the first decreasing 

value is reached. The global maximum is the value calculated prior to the last value. If the CCS 

sequence is decreasing, then search for the maximum by computing the previous values. The 

above procedure requires the computation of at least three values of CCS, and the final number 

of computed CCS values depends on the assumed initial speed (time delay) and the measured 

speed (delay). Still, there is no need to calculate all values of the CCS estimate, as shown in 

Fig. 5 (left) for the purpose of illustration. 

Fig. 5 (right) depicts the beginning fragment of the magnitude DFT of p1[n] (4). In the 

considered MFIM system, VMPs contain approximately one oscillation, i.e., the DFT bin k=1 

has the highest magnitude. For the considered class of signals it is sufficient to compute only 2 

DFT bins for shift estimation according to (7). This is a significant advantage over the CCS-

based shift estimation, as the computational load for the DFT-based estimation is fixed and 

often lower than that for the CCS. In this example, the estimated shift is fractional, with  

ns=-152.4159, and the corresponding speed is 9.84 m/s (35.43 km/h). The DFT has an 

advantage over the CCS in that it can estimate fractional shifts, i.e., shifts occurring between 

sampling times, whereas the result in CCS is quantized to sampling instances. We can leverage 

this property of the DFT by additionally downsampling the VMPs Q times prior to shift 

estimation, as illustrated in the following subsection. 

The computational complexity of the CCS (2) for all lags m, is proportional to N2 operations 

but can be reduced to Nlog2N operations by applying the FFT algorithm [8]. However, we only 

need to find the maximum of CCS, and thus typically a reduced number of M CCS coefficients 

must be evaluated, with 3≤M≪2N. The computation of a single CCS coefficient has complexity 

proportional to N. However, for high time resolution, the sampling frequency must be high, and 

thus the number of samples N in VMP must also be high. 

The computation of a single DFT bin requires N operations. By employing DFT-based 

fractional shift estimation (7-9) a high time resolution is maintained even when VMPs are 

downsampled by a factor of Q. Thus, the proposed DFT-based method is MN/(2N/Q)=MQ/2 

times faster than the CCS. 

4.2. Field test signals 

Tab. 1 and Tab. 2 present the results of shift and speed estimation for all signals depicted in 

Fig. 4, using the CCS and the DFT, respectively. There are some inconsistencies observed 

between the two methods. The case of the highest and the lowest absolute difference in shift 

estimation between the CCS-based and the DFT-based algorithms is marked in red and green, 

respectively, in Tab. 1 and Tab. 2. The values of differences are 4.41 and 1.75. 

The quality of shift estimation can be assessed by the effectiveness of VMPs adjustment 

following shift compensation. Figure 8 depicts the absolute difference between the VMP p1[n] 

and p3[n] adjusted according to the shift as estimated by the CCS and DFT. The shift was 

compensated for by using a fractional delay FIR filter with the Blackman window, as shown in 

Fig. 7. It is observed that a better adjustment is obtained for the shift estimation based on the 

DFT. The quantitative comparison is based on the maximum value of the absolute difference 

and the root mean square (RMS) value of the absolute difference, both of which are provided 

in the legend. 

Figure 9 depicts the maximum and RMS values of the absolute difference between the VMP 

p1[n] and p3[n], adjusted based on the shift as estimated by the CCS and the DFT for all 

measured signals. VMPs were adjusted by the fractional delay FIR filter designed with the 

Blackman window shown in Fig. 7. The measurement number refers to the signals in Tab. 1 

and Tab. 2 column-wise. The DFT-based shift estimation outperforms the CCS-based 

estimation for all test signals considered. The error in the delay estimated from the DFT bins 
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k=1, k=2, k=3 according to (7), (8), (9) is very similar, as it is mainly caused by shape 

inconsistencies between VMPs p1[n] and p3[n] obtained by different IL sensors. 

 

Table 1. CCS-based shift and speed estimation. 

 Mercedes GLA200 Hyundai ix35 

forward backward forward backward 

shift (samples) 124 

124 

125 

-149 

-148 

-147 

124 

124 

123 

-128 

-128 

-128 

mean shift 124.33 -148 123.67 -128 

speed (m/s) 12.1 

12.1 

12 

-10.07 

-10.13 

-10.20 

12.1 

12.1 

12.2 

-11.72 

-11.72 

-11.72 

mean speed 12.06 -10.13 12.13 -11.72 

 

Table 2. DFT-based shift and speed estimation. 

 Mercedes GLA200 Hyundai ix35 

forward backward forward backward 

shift (samples) 126.63 

126.47 

126.99 

-152.48 

-152.41 

-151.39 

125.75 

125.83 

125.64 

-130.1 

-130.02 

-130 

mean shift 126.7 -152.1 125.74 -130.04 

speed (m/s) 11.85 

11.86 

11.81 

-9.84 

-9.84 

-9.91 

11.93 

11.92 

11.94 

-11.53 

-11.54 

-11.54 

mean speed 11.84 -9.86 11.93 -11.53 

 

 

Fig. 8. The absolute difference between the VMP p1[n] and p3[n] adjusted according the shift as estimated by the 

CCS (blue) and the DFT (red) for k=1. 
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Fig. 9. Maximum and RMS values of the absolute difference between the VMP p1[n] and p3[n] adjusted 

according to the shift as estimated by the CCS and the DFT for all measured signals. In the legend k denotes the 

DFT bins used for delay estimation based on (7), (8), (9). 

4.3. Fractional time delay estimation 

Figure 10 shows the test signals used for estimating fractional time delay. The VMP p1[n], 

plotted in red, was shifted by the fractional delay FIR filter in the range of ns from 130 to 170 

with an increment of 0.01 sampling period to obtain the set of 4001 test signals plotted in green. 

In this setup, both VMPs, i.e. the red one and the green one, have the same shape. 

Figure. 11 depicts the estimation error, which is the difference between the estimated and 

the true values, obtained for the test signals shown in Fig. 10. It is observed that the estimation 

based on the DFT is practically unbiased and has a low standard deviation (std). In contrast, the 

estimation based on the CCS has a significantly higher std due to the requirement for the shift 

to be an integer value. Additionally, the CCS-based estimation is biased, as indicated by the 

mean value of an error. The CCS (2) is computed from the overlapping parts of the signals, and 

for impulse-like signals, such as VMPs, the position of the CCS maximum may be biased. For 

example, in the case of a shift of ns=150 samples for the signals in Fig. 10, the maximum CCS 

value of 151.12 is observed at ns=146, while the CCS value for the true shift of ns=150 is only 

slightly lower and equals 151.07. In the case of the proposed DFT-based estimation, the best 

results are obtained for a delay computed by (8), i.e., as a mean value of delays estimated based 

on DFT bins k=1 and k=2. The worst DFT-based estimator is the one using the DFT bin k=3. 

 

Fig. 10. 4001 test signals (plotted in green) for fractional time delay estimation with 0.01 sampling period 

increment. 
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Fig. 11. Fractional shift estimation errors for CCS-based (left) and DFT-based (right) algorithms. The shift is 

incremented in 0.01 steps, as shown in Fig. 10. The error is the difference between the estimated and true values. 

 

Fig. 12. Absolute mean value and std of fractional shift estimation error for CCS-based and DFT-based 

algorithms for all measured signals. The shift is incremented with the 0.01 step, see Fig. 10. 

The results presented in Figs. 10, 11 were obtained for all 12 test signal shown in Fig. 4. 

Figure 12 presents the bias and variance of shift estimation by the CCS and the DFT. It has 

been observed that for a considered class of signals, the estimation based on the DFT is 

practically unbiased with a negligible std. In contrast, the estimation based on the CCS is biased, 

at a level of approximately 3 sampling times, with a std of approximately 0.29 sampling times. 

The best results were once again obtained for the delay calculated using (8). 

4.4. Downsampled VMP time delay estimation 

Accurate fractional shift estimation of the DFT–based algorithm can be utilized to reduce 

computational complexity by decreasing the number of samples in VMP through signal 

downsampling. Figure 13 shows VMPs p1[n] and p3[n] at the original sampling frequency Fs, 

as well as at reduced sampling frequencies Fs/4, Fs/8, and Fs/16. The results of time delay 

estimation based on downsampled signals are presented in Fig. 14. It is observed that at the 

original sampling frequency, i.e. for Q=1, the results for both algorithms are similar. However, 

with a reduced number of VMP samples, the results for the CCS–based estimation may deviate 

significantly, whereas for the DFT-based estimation, the results are consistent. For example, it 

is observed in Fig. 14, that even with Q=20, the result for the DFT–based estimation is close to 

the one obtained with original sampling, i.e., Q=1. 

Downsampling by a factor of Q reduces the computational complexity of the proposed DFT-

based delay estimation by Q times. 
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Fig. 13. Downsampled VMPs signals p1[n] and p3[n]. 

 

Fig. 14. Time delay estimation results for downsampled signals for CCS-based and DFT-based algorithms. The 

VMPs for downsampling factors Q equal 4, 8, and 16 are depicted in Fig. 13.  

4.5. Noise immunity 

Figure 15 presents the mean value and std of shift estimation errors for ns=-150 and both 

VMPs disturbed by additive white Gaussian noise (AWGN) across a range of signal-to-noise 

ratios (SNR) from 0 dB to 60 dB. The mean value and the std of the delay estimation error were 

computed from 106 signal realizations for each SNR. It is observed in Fig. 14 that the CCS-

based estimation is biased, as the mean error is over 3, which is consistent with the results in 

Figs. 11, 12. The bias of the estimation based on the DFT is close to zero. The standard 

deviation of all DFT-based methods is also lower than the standard deviation of the CCS-based 

estimation. 
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Fig. 15. Mean value and std of shift estimation error for CCS-based and DFT-based algorithms for ns=-150 and 

AWGN, NR denotes the number test signal of realizations.  

Figure 14 illustrates the superior performance of the proposed DFT-based delay estimation 

application compared to the CCS-based estimation for noisy signals. The best results were 

obtained for the delay calculated using (9) and slightly worse results were obtained by using (8). 

Noise immunity is an important general property of any estimation method, however in the 

presented MFIM system, wide-band noise is suppressed through signal preprocessing. The 

perfectly flat-top filters used for signal demodulation [1] have a very narrow passband, which 

effectively suppresses broadband disturbances such as white noise. Downsampling from 

400 kHz to 1 kHz involves the use of an additional lowpass filter what further reduces wideband 

noise. 

5. Conclusions 

The paper presents a DFT-based algorithm for estimating the fractional shift between two 

VMPs of a passing vehicle, which is then used to determine its speed. The computational 

properties of the algorithm are demonstrated using real-world VMPs obtained from a fully 

operational MFIM system located at the internal road of AGH University campus. The DFT-

based time delay estimation has the advantage of fractional estimation, which occurs between 

sampling times. This is very convenient because downsampling VMP signals reduces the 

computational complexity of shift estimation, as well as makes data management (i.e. 

transmission and storage) of downsampled VMPs more efficient. 

The paper presents a proof of concept, and long-term observations will be conducted next. 

The developed MFIM system is planned to be used on a national road with an estimated number 

of a few thousand vehicles passing per day. A single passage produces 6 VMPs due to resistive 

and reactive components, both computed for each of the three measurement frequencies. Thus, 

the MFIM system will face a big data problem with computing, storing, and transmitting all 

VMPs. In this respect, a low sampling frequency is strongly preferred. The proposed DFT-

based estimation method can operate effectively with low sampling frequencies while 

maintaining high accuracy, unlike the standard CCS-based estimation method, which 

necessitates high sampling frequencies. 

In a future large-scale, long-term research study, the DFT-based algorithm will initially 

operate concurrently with the CCS-based algorithm in our MFIM system for additional 

validation and comparison between the two. As the two algorithms operate based on different 

principles, i.e., in the time and frequency domains, they can both be utilized for data fusion in 

the case of significantly disturbed VMPs. It is expected that the disturbance will affect each 
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method differently. Finally, the decision will be made on whether the DFT-based computations 

will replace the CCS in the MFIM system or if both will work in conjunction. 

Although the presentation focuses on inductive-loop technology and vehicle VMP, we 

anticipate that the described DFT-based fractional time delay estimation is also applicable to 

other types of sensors used in road traffic measurements, and generally to any system requiring 

time shift estimation between short-duration, low-oscillation, impulse-like signals. The 

substitution of the cross-correlation with the proposed DFT-based shift estimation in a road 

traffic measurement system can lead to better results in the sense of higher accuracy, thanks to 

fractional shift estimation, and also lower computational complexity. 
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