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Abstract 

This paper presents a novel approach for diagnosing and monitoring Broken Rotor Bar (BRB) faults in induction 

motors through vibration signal analysis. The method integrates advanced signal processing techniques such as 

the Hilbert Huang Transform (HHT) with machine learning methods, specifically Multilayer Perceptron (MLP). 

The study initiates with an HHT application to identify fault-related harmonics, achieved through complete 

Empirical Ensemble Mode Decomposition with Adaptive Noise (CEEMDAN) of the vibration signal (Vx), 

producing intrinsic mode functions (IMFs). A statistical analysis, employing correlation coefficients (CC), 

facilitates the selection of relevant IMFs indicative of BRB faults. IMFs with CC values equal to or greater than 

0.2, notably IMF1, IMF2, IMF3, and IMF4, appear to be informative. Following IMF selection, signal reconstruction 

ensues by incorporating these useful IMFs. After rebuilding the signal, we use global thresholding based on a 

statistical analysis that includes Root Mean Square (RMS) and Energy Coefficient (EC) calculations. The Signal 

Reconstruction Denoising (SRD) meets the criteria for selection. Spectral envelope analysis of SRD is then 

employed for BRB fault detection. The subsequent phase employs a Multi-Layer Perceptron (MLP) for BRB 

localization. Features utilized for training the MLP model include EC and various frequency components (fvb-, fvb+, 

2fvb-, 2fvb+, 4fvb-, 4fvb+, 6fvb-, 6fvb+, 8fvb-, and 8fvb+). Results from MLP demonstrate exceptional performance, 

achieving a classification rate of 99.99%. The proposed CEEMDAN-MLP method exhibits robust efficiency, 

validated by experimental results, and offers promising prospects for BRB fault diagnosis and monitoring in 

induction motors. 

Keywords: Broken rotor bar, induction motor, machine learning, statistical factors, signal processing, vibration. 

1. Introduction 

Induction motors serve as vital components in various industrial applications. Any 

malfunction within these motors can lead to disruptions in production schedules and escalate 

maintenance expenses. Extensive statistical analyses underscore that broken rotor bars 

predominantly contribute to failures in induction motors. Proactive prediction and timely 

detection of such failures hold the key to substantial savings in maintenance expenditures, 

encompassing reduced motor downtime and spare parts consumption [1, 2]. 

Effective monitoring of faulty rotors is a critical to ensure the induction motors reliability 

and operational safety. This monitoring primarily relies on extracting pertinent information to 

detect prevailing degradation conditions. Engineers employ a diverse array of physical 

parameters for rotor condition monitoring, encompassing electrical currents, pressure, oil 

analysis, acoustic emission, and vibration analysis [3, 4]. 

Vibration analysis stands out as the predominant technique in industrial settings for 

monitoring and diagnosing rotor faults. A data acquisition system captures and records complex 

vibration signals emitted by the rotor during operation by strategically deploying 
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accelerometers on the bearings of induction motors. Vibration analysis operates at three distinct 

levels: monitoring, diagnosis, and localization. At the monitoring level, global indicators are 

utilized to characterize changes in the rotor's behavior. The subsequent diagnosis level employs 

signal processing tools to pinpoint and identify faults accurately. Finally, the localization level 

involves tracking the damage state of each individual fault element [5, 6]. 

Researchers have explored and refined numerous vibration signal processing techniques to 

effectively detect and diagnose rotor bar faults. There are many useful techniques that can be 

used over time, such as spectral analysis (which includes Fast Fourier Transform (FFT), 

cepstral analysis, digital analysis, and envelope analysis), time-frequency analysis techniques 

(like Short-Time Fourier Transform (STFT) and Wigner-Ville Distribution (WVD)), and 

statistical measures (like kurtosis, peak factor, Root Mean Square (RMS), and peak-to-peak 

factor). Additionally, newer methodologies like multiresolution wavelet analysis, wavelet 

packets, the Hilbert Huang Transform (HHT), and Empirical Mode Decomposition (EMD) 

have emerged as powerful tools to expedite the detection of rotor faults [7, 8]. 

The HHT principle dynamically dissects a signal into a combination of oscillatory 

components, where each component resonates at a single frequency per sample. This process, 

termed EMD, meticulously disassembles the signal. Subsequently, it computes the frequency 

and instantaneous amplitude of these components by leveraging the Hilbert transform [9]. 

Based on the Hilbert transform, which is a common diagnostic tool for checking induction 

motor rotors, the spectral envelope technique can find shock-type faults early on. The 

methodology behind this technique [10] unfolds through the following steps: 

Step 1: Filtering of the raw signal to eliminate extraneous components; 

Step 2: Application of the Hilbert transform to compute the envelope; 

Step 3: Generation of the envelope spectrum to glean insights into the fault's 

characteristics. 

Machine-learning-based monitoring entails detecting abnormal changes in system behavior 

or state and accurately determining their root causes. When combined with automatic diagnosis 

features, these monitoring systems play a crucial role in ensuring safety, uninterrupted service, 

and the recording of pertinent events for corrective maintenance or feedback during online 

operations or standard shutdown phases [11]. 

One of the prominent machine learning techniques utilized is the Multi-Layer Perceptron 

(MLP). It represents an advancement of the neural network architecture, featuring one or more 

hidden layers positioned between the input and output layers. Within an MLP, every neuron in 

a layer is intricately connected to all neurons in the preceding and succeeding layers (excluding 

the input and output layers), without interconnections within the same layer. The activation 

functions predominantly employed in this network type include threshold or sigmoid functions 

[11, 12]. 

Over the last two decades, researchers have developed numerous studies on the detection of 

BRB faults. [13] improved the readability of the stator current spectrum of an induction motor, 

thereby simplifying the identification of BRB defects. It talks about how a Chebyshev-type 

filter can lower the fundamental component (50 Hz), which makes it easier to read and find the 

fault frequency in the stator current spectrum. [14] demonstrates the use of park current analysis 

for automatic detection and monitoring of BRB fault in induction motors. This work develops 

the modeling of the multiple-winding induction motor, and proposes a combined discrete 

wavelet transform with fuzzy logic (ANFIS) techniques to detect the harmonics characterizing 

the BRB fault and to locate the number of BRBs. [15] presents a study based on the continuous 

wavelet transform, which employs the multi-level decomposition of the stator current signal to 

detect and localize the BRB fault. The work of [16] deals with a study based on the HHT for 

monitoring an induction motor with the BRB fault. The authors used two approaches: the first 

approach is based on the HHT-CEEMD to detect harmonics characterizing the BRB fault. The 
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second approach uses the ANN for monitoring and classifying the numbers of BRB faults. The 

work of [17] presents an online diagnosis method for a BRB fault squirrel-cage induction motor. 

The method uses a coil embedded inside a corner of the stator, acting as a large search coil. The 

combination of the time domain and the frequency domain characteristics of the induced 

voltage of the search coil diagnose the BRB fault. 

This paper focuses on diagnosing and automatically monitoring BRB faults in squirrel-cage 

induction motors. The proposed CEEMDAN-MLP method combines two innovative 

techniques for detecting and localizing BRB faults. The first technique employs CEEMDAN 

based on HHT to process vibration signals on the shaft (VX), enabling BRB fault detection and 

feature extraction. The second technique trains a multi-layer perceptron (MLP) using the 

extracted features to localize the number of BRB faults. Experimental tests rigorously validate 

all findings presented in this study. 

2. Proposed method 

The proposed method, CEEMDAN-MLP, for diagnosing BRB faults is outlined in the 

following steps: 

First step: Vibration signals acquisition (VX); 

Second step: Application of the Hilbert-Huang transform with CEEMDAN decomposition 

mode. The algorithm presents the principle using the EMD through several sub-steps, as 

outlined below [18, 19]: 

Sub-step 1: Use the EMD to decompose I realizations in order to obtain its first modes 

and calculate the first mode of CEEMDAN. 

 
1

1

1 I i
i

i
IMF IMF

I =
=  . (1) 

Sub-step 2: Calculate the first residue: 𝑟1 = 𝑥 − 𝐼𝑀𝐹1
̅̅ ̅̅ ̅̅ ̅. 

Sub-step 3: Use the EMD to decompose 𝑟1 + 𝜀1𝐸1(𝜔𝑖), (𝑖 = 1, … … , 𝐼) in order to obtain 

its first mode and define the second mode of CEEMDAN: 
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Sub-step 4: For 𝑘 = 2, … . . , 𝐾, the 𝑘𝑡ℎ residue is given as: 

 1k k k
r r IMF

−
= −

. (3) 

Sub-step 5: Use the EMD to decompose the realization 𝑟𝑘 + 𝜀𝑘𝐸𝑘(𝜔𝑖), i = 1, … … , I and 

define the (𝑘 + 1)𝑡ℎCEEMDAN mode as follows:  
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where 𝐸𝑘 is the function that extracts the 𝑘𝑒𝑚𝑒 IMF obtained by EMD, I is the number of 

achievements and 𝜀𝑘is the amplitude of added white noise.  

Sub-step 6: Go to 4th step for the next 𝑘. 

Sub-step 7: Iterate from 4th to 6th until the obtained residue cannot be further decomposed 

by EMD. The final residue is given as follows: 
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Therefore, we can express the given signal as follows: 

 
1

n

n i
i

x r IMF
=

= +  .  (6) 

Third step: In this step, we analyze three statistical factors: correlation coefficient (CC), root 

mean square (RMS), and energy coefficient (EC). 

 

Sub-step 1: The correlation coefficient serves as a robust tool for selecting pertinent 

modes. For a given time series IMF (t), the correlation coefficient between the original 

signal and its corresponding IMF obtained by HHT is calculated using the following 

equation [20]: 
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Sub-step 2: The RMS value serves as a characteristic metric, enabling the measurement 

of the signal's average energy. It is instrumental in detecting unusually high energy 

dissipations associated with the emergence of a fault [21]. 
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Sub-step 3: The energy density of the details and its corresponding average period are 

defined as follows [22]: 
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Fourth step: The Hilbert-Huang spectral envelope is expressed by the following three 

equations [23]: 
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2 2( ) ( ) ( )SRD t SRD t SRD t= + ,   (12) 

where SRD is signal reconstruction post-denoising. 

 

Fifth step: In this step, we employ the MLP fault detector and classifier [24, 25]. The multilayer 

perceptron network is expressed as follows: 
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where yk : output of the network, xj: input of the network, 𝜔𝑖𝑗
(1)

, 𝜔𝑘𝑖
(2)

: weights of the first and 

second hidden layers, respectively and 𝜔0
(1)

, 𝜔0
(2)

 : biases in the first and second hidden layers, 

respectively. 
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Equation (14) delineates the general form of the Levenberg-Marquardt (L-M) learning 

algorithm. 

 ( )
1
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T

n n n n n nJ J I J e   
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+ = − + ,   (14) 

where 𝜔𝑛 is used to train MLP network, 𝜇: regularization factor determining the algorithm 

operation, 𝐽𝑛: jacobian matrix, 𝑒𝑛: learning error and 𝜂: learning rate. 

The objective function is structured as follows: 

 C E E = + ,  (15) 

where 𝐸: sum of mean square errors, 𝐸𝜔: sum of squared weights, 𝛽: learning factor and 

𝛼: decay rate. 

The α factor serves to constrain weight values, significantly diminishing the network's 

inclination to over-fit. This adjustment enhances resilience against noise and erroneous input 

data, albeit at the expense of increased computational time [25]. 

The algorithm illustrates the principle using the MLP by breaking it down into several  

sub-steps as outlined below: 

Sub-step 1: The objective is to provide a training pattern to the network; 

Sub-step 2: The task entails comparing the network output to the target output; 

Sub-step 3: The task involves calculating the error output of each neuron in the network. 

Sub-step 4: Determine the accurate output value for each neuron; 

Sub-step 5: The local error value can be obtained by defining the necessary adjustment, 

whether it involves an increase or a decrease; 

Sub-step 6: The weight adjustment is crucial for every connection to minimize the 

smallest local error; 

Sub-step 7: The task involves assigning a correction to all preceding neurons. 

Sub-step 8: The process should be iterated from step 04 until a predefined performance 

threshold is achieved. 

3. Description of the dataset for diagnosing Broken Rotor Bar (BRB) faults, 

experimental results and discussion 

Lakehead University [26] provides vibration data sets, and Fig. 1 illustrates a specialized test 

rig that extracts vibration signals from an induction motor's broken rotor bar. The equipment 

setup includes an induction motor, a torque transducer, and the rotor bar under test. A 248 W 

induction motor drives the system, transmitting power through a shaft that connects to a 

coupling, a speed-reducing gearbox, and a magnetic clutch load system. Additionally, 

accelerometers are affixed to the motor housing using magnetic bases to capture the vibration 

signals. 

 

Fig. 1. Experimental test rig [26]. 
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Table 1 concisely presents the specifications of the tested induction motor [26]. 

Table 1. Specifications from the motor nameplate. 

Model Number 056T34F5301 

Phase 3 

Poles 2 

Output Power 248 W 

Supported supply frequency 50 Hz 

Full-Load 1.85 A 

Amperage 2.2 A 

Rotor Bars 34 

Stator slots 24 

Nominal Speed 2850 r/min 

 

To vary the motor loads within the range of 0 to 0.814 Nm, an embedded gearbox is utilized. 

The output shaft of the gearbox is linked to a magnetic clutch, which effectively acts as a load 

driven by the induction motor. The torque applied corresponds directly to the motor load. This 

relationship is regulated by the variable frequency drive controlled by the unit. Consequently, 

as the motor load increases, the torque rises while the shaft speed simultaneously decreases. At 

0 Nm, the motor operates under a no-load condition [26]. 

The measurement chain, which incorporates an accelerometer referred to as the 3-axis 

LIS3DH-transducer vibration sensor. This accelerometer offers the advantage of capturing 

vibration signals along three axes. Additionally, the measurement chain includes C-CT-16 

transducer current sensors. The sampling frequency (Fe) employed is 1000 Hz, with an 

acquisition time of 64 s. This yields a frequency resolution of Δf = Fe/N = 0.015625, where N 

represents the number of signal points, equal to 64000. Moreover, to ensure a robust analysis 

due to the stochastic nature of the measured signals, ten acquisitions are performed for each 

acquisition [26]. 

Table 2 summarizes the test conditions [26]. 

Table 2. Test conditions. 

Supply frequency of electrical network (fs) 50 Hz 

Motor Conditions Healthy case, one BRB faulty case, Two BRBs faulty case and 

Three BRBs faulty case 

Load Levels and approximate torque (Nm) 0.793, 0.804, 0.809 and 0.814 

Frequency of rotation (fr) 49.78 Hz, 49.1 Hz, 48.8 Hz and 48.5 Hz 

Number of signal points 64000 

Sampling frequency (Fe) 1000 Hz 

 

The proposed methodology comprises the following steps: 

Step 1: Apply the CEEMDAN algorithm to decompose the original signal; 

Step 2: Calculate the correlation coefficients between the original signal and its IMFs; 

Step 3: Select IMFs with correlation coefficients greater than or equal to 0.2 as useful 

modes; 

Step 4: Reconstruct the signal by incorporating the selected useful IMFs; 

Step 5: Perform the thresholding operation using a global threshold; 

Step 6: Calculate the root mean square and energy coefficient of the signal reconstruction 

after denoising to detect the presence of a broken rotor bar fault; 

Step 7: Use envelope analysis to pinpoint the location of the fault, if present. 

Step 8: Extract features from the characteristic frequency peaks identified through the 

envelope analysis and the statistical study. 

Step 9: Employ MLP-based machine learning for fault detection and fault classification. 
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Figure 2 illustrates the vibration signals of the induction motor under both healthy and faulty 

conditions with one, two, and three broken rotor bars. 

a) b) 

  
c) d) 

  

Fig. 2. Vibration signals: a) healthy case; b) one BRB; c) two BRBs; d) three BRBs. 

Figure 3 illustrates the correlation coefficient for each IMF in both healthy and faulty 

conditions with one, two, and three BRBs. 

a) b) 

  
c) d) 

  

Fig. 3. Correlation coefficient: a) healthy case; b) one BRB; c) two BRBs; d) Three BRBs. 

Figure 3 (a–d) displays the correlation coefficients between the original signals and their 

IMFs. IMFs with correlation coefficients greater than or equal to 0.2 are selected as useful 
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IMFs. This criterion is met by IMF1, IMF2, IMF3, and IMF4, which are subsequently employed 

for signal reconstruction and processing using the global thresholding technique. 

Global thresholding establishes a universal threshold   for the coefficients of the IMFs, 

regardless of the decomposition level. The threshold calculation is determined by the following 

equation: 

 ( )2log N = ,   (16) 

where N is the number of samples and σ is the standard deviation. 

 

The following equation provides the value of the standard deviation: 

 
( )

0.6745

median SR
 = ,  (17) 

where SR is the reconstruction signal with useful IMFs. 

 

Figure 4 depicts the signals reconstructed by summing the useful IMFs before and after 

applying the global thresholding technique 

We use the energy coefficient to test the effectiveness of this technique for allowing early 

fault detection. The energy coefficient values before applying global thresholding are as 

follows: 11.21 in the healthy case and 12.12 in the case of one broken rotor bar. While in the 

cases of two and three broken rotor bars the energy coefficient decreases with the values 11.39 

and 10.74 successively. After applying the global thresholding technique, we notice that the 

energy coefficient increases in proportion to the increase of broken rotor bars number. In the 

healthy case, the energy coefficient takes a value of 5.48. In cases of broken rotor bars, the 

energy coefficient increases and takes the values 8.20, 8.29, and 8.45. The proposed technique 

is effectively optimized based on the energy coefficient. Therefore, early fault detection has 

better performance. 

The subsequent part of this section is dedicated to computing the frequencies associated with 

broken rotor bar faults and extracting fault indicators from them to train the machine learning 

system. 

The frequencies of the BRB fault are determined by the following equation: 

 r pvb
f n f f=   , (18) 

where 𝑓𝑝 is the frequency of passage per pole, which is defined as follows: 

 f p fp g=  , (19) 

where 𝑓𝑔 is the slip frequency, which is defined as follows: 

 2 s
g r

f
f f

p
=  − , (20) 

where 𝑓𝑠 is the supply frequency of electrical network and 𝑓𝑟 is the frequency of rotation, which 

defined as follows: 

 
60

s
r

R
f = ,   (21) 

where 𝑅𝑠 is the rotation speed of induction motor.  
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a) b) 

  
healthy case healthy case 

  
one BRB one BRB 

  
two BRBs two BRBs 

  
three BRBs three BRBs 

Fig. 4. Reconstructed signal for (a) before applying the global threshold; (b) after applying the global threshold. 

Table 3 provides a summary of the fault frequencies computed using (18), (19), (20), and 

(21) for a motor operating under a load of 0.814 Nm and a rotational speed of 2910 rpm. 
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Table 3. Theoretical fault frequencies (in Hz). 

rf  pf  
vb

f −  vb
f +  

2
vb

f −  
2

vb
f +

 

48.50 4.8 43.7 53.3 92.2 101.8 

 

4
vb

f −
 4

vb
f +

 6
vb

f −
 6

vb
f +

 8
vb

f −
 8

vb
f +

 

189.2 198.8 286.5 295.8 383.2 392.8 

Fig. 5 illustrates the envelope spectrum of reconstructed and denoised signals for the healthy condition and the 

faulty cases with one BRB, two BRBs, and three BRBs. 

In the envelope spectrum of the reconstructed signals after denoising (SRD), frequencies 

such as fp, fr, 2fr, 3fr, 4fr, 5fr, 6fr, 7fr, and 8fr are discernible. Notably, the absence of fault 

frequencies corroborates the rotor's good condition. The prevalence of 2fr over fr suggests a 

predominance of parallel misalignment relative to angular misalignment. Additionally, the SRD 

envelope spectrum analysis reveals a pronounced amplitude at the frequency signature of 3fr 

(145.32 Hz), indicating a potential preponderance of angular misalignment. As misalignment 

intensifies, higher harmonic peaks ranging from 3fr to 8fr are generated (Fig. 5.a). Further 

analysis of the SRD spectral envelope exhibits harmonics at frequencies such as fvb-=43.67 Hz, 

fvb+=53.21 Hz, 2fvb-=92.11 Hz, 2fvb+=101.65 Hz, 4fvb-=188.99 Hz, 4fvb+=198.53 Hz, 6fvb-

=286.5Hz, 6fvb+=295.8Hz, 8fvb-=383.2 Hz, and 8fvb+=392.8 Hz. These findings unequivocally 

confirm the presence of broken rotor bars (Fig. 5. (b-d)). 

 
a) b) 

  
c) d) 

  

Fig. 5. Envelope spectral of SRD: a) healthy case; b) one BRB; c) two BRBs; d) three BRBs. 

At the end of this section, we will extract the features needed to train the MLP machine-

learning system. 

The feature extraction process aims to train the machine learning system based on MLP. 

This training takes into account the changes in both frequency amplitudes and energy factors 

that occur simultaneously with load variations (0 Nm, 0.793 Nm, 0.804 Nm, and 0.814 Nm), as 

well as the number of broken rotor bars (one BRB, two BRBs, and three BRBs). 
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Figure 6 illustrates two scenarios: in the first case, a fixed load of 0.841 Nm is examined 

with varying numbers of broken rotor bars, while in the second case, different loads are 

analyzed with one broken rotor bar. 

The analysis demonstrates that both the number of broken bars and load torque exert a 

substantial influence on the amplitudes of characteristic frequencies and the energy coefficient. 

Specifically, selected frequencies including fvb-, fvb+, 2fvb-, 2fvb+, 4fvb-, 4fvb+, 6fvb-, 6fvb+, 8fvb-, and 

8fvb+, alongside EC, exhibit a notable escalation in amplitude with increasing numbers of broken 

bars and load torque. These frequencies and energy coefficients represent novel features critical 

for the training of the MLP-based machine learning system. 

 
a) b) 

  

  

Fig. 6. Amplitudes of characteristic frequencies and energy coefficient: a) different number of broken rotor bars 

with load 0.814; b): different load torques under one BRB. 

The machine learning technique based on MLP utilizes a split ratio of 80:20, partitioning the 

dataset into training and testing subsets. The training subset comprises 80% (480 signals) of the 

data, while the testing subset encompasses 20% (120 signals). This split ratio was selected 

empirically, informed by literature findings, particularly concerning the classification of broken 

rotor bar faults. 

To finalize the diagnosis of broken rotor bars, we employ a machine learning approach based 

on MLP to pinpoint the fault, whether it's one, two, or three broken rotor bars. 

Figure 7 illustrates the architecture of the MLP model and its schematic representation. 
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Fig. 7. Schemas diagram of MLP. 

We conducted the investigation into perceptron effectiveness across 20 training and testing 

series, accounting for the stochastic nature of weight initialization. 

The experiments employed the tansig activation function in tandem with the Levenberg-

Marquardt training algorithm (trainlm) set at a learning rate of η = 0.5 for both the fault detector 

and fault classifier. 

The evaluation criteria for fault classification encompass accuracy, sensitivity, specificity, 

precision, g-mean, and F1-score [27]. 
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where TP: True positive; TN: True negative; FP: False positive; FN: False negative. 
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Figure 8 illustrates the relationship between accuracy and the number of nodes for both the 

fault detector and fault classifier. 

 

Fig. 8. Accuracy as a function of the node number. 

As shown in Fig. 8, one can notice that the optimal MLP node count is 13, achieving an 

outstanding 99.99% accuracy for both the fault detector and fault classifier. This underscores 

the efficiency of the MLP-based machine learning method in detecting and pinpointing BRBs. 

Notably, the CEEMDAN technique significantly enhances performance, as illustrated in 

Fig. 9, yielding highly satisfactory results. 

The improvement in accuracy has significantly proven the process's ability to identify BRB 

faults and determine the number of broken bars, as evidenced by the confusion matrices 

presented in Fig. 10. 

 

  
Fig. 9. Output values of MLP based on CEEMDAN. Fig. 10. Confusion matrices. 

 

The MLP technique demonstrates an impressive sensitivity rate of 99.98%, signifying its 

excellent ability to accurately detect true positive results when the rotor is defective. Moreover, 

the specificity is notably high, reaching 98.95%, indicating a strong likelihood of obtaining a 

correct negative result when the rotor is in good condition. The classifier exhibits exceptional 

accuracy, correctly predicting the true positive results of all identified positive cases with a rate 

of 99.96%. Additionally, the G-mean rate, which reflects the classifier's performance in 

classifying positive cases, is commendably high at 99.97%. Furthermore, the F1-score, which 

measures the harmonic mean of precision and G-mean, achieves an impressive rate of 99.986%. 

Overall, the classification rate stands at 99.99%, underscoring the fault detector and fault 

classifier's remarkable capabilities and efficiency. 
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4. A comparative study 

Based on evaluation criteria, we conduct a comparison between the proposed MLP technique 

and four other well-known machine learning techniques. We assess these techniques based on 

their accuracy, sensitivity, specificity, precision, G-mean, F1-score, and calculation time. Table 

4 provides a summary of this comparison among machine learning techniques. 

Table 4. Compares the MLP technique proposed with other AI techniques. 

Techniques Accuracy Sensitivity Specificity Precision G-mean F1-score 1/Time normalized 

MLP 99.99% 99.98% 98.95% 99.96 99.97% 99.986% 0.0001 

NB 98.98% 97.9591% 99.149% 97.9% 97.95% 97.562% 0.01 

KNN 85.034% 0% 99.206% 0% 0% 0% 1 

RF 78.881% 3.260% 91.485% 3.2% 2.97% 60.23% 0.0434 

SVM 70.142% 99% 65.333% 99% 80.115 85.458% 0.0411 

 

This comparative study clearly demonstrates that the MLP technique outperforms other 

techniques across various evaluation criteria such as accuracy, sensitivity, precision, G-mean, 

F1-score, and low calculation time. Despite its simple design and assumptions, the MLP 

algorithm shows superior performance in this application. On the other hand, KNN, RF, and 

NB exhibit lower sensitivity and precision despite achieving good accuracy. Conversely, SVM 

has the lowest accuracy but performs well in terms of specificity and precision. These 

observations indicate that these algorithms have difficulties in accurately predicting the 

negative class (indicating fault presence). 

 

Table 5 outlines a comparative analysis of the proposed method against recent works in 

terms of accuracy. The proposed method shows the highest rate of accuracy, proving its 

outperformance. 

Table 5. Comparative accuracy analysis of various methods. 

Ref Methods  Classification accuracy (%) 

[28] 

Discrete Fourier Transform (DFT)-Decision Tree 

Classification (DTC)  

95% for 3BRBs 

98% for 6BRBs 

Discrete Fourier Transform (DFT)- Artificial Neural 

Network (ANN) 

87% for 3BRBs 

89% for 6BRBs 

[29] 
Sums and Differences Histograms (SDH)- Decision tree 

Classification (DTC) 
98.16% 

[30] 
Fast Fourier Transform (FFT)-Decision tree 

classification (DTC) 
92.1% 

[31] 
Discrete Wavelet Transform (DWT)- Artificial Neural 

Network (ANN)  
98.62% 

[32] 

Short-Time Fourier Transform (STFT)-Support Vector 

Machine (SVM) 
99.0% 

Short-Time Fourier Transform (STFT)-K-Nearest-

Neighbor (KNN) 
99.0% 

Proposed method 

Complete Empirical Ensemble Mode Decomposition 

with Adaptive Noise (CEEMDAN)-Multi Layer 

Perceptron (MLP) 

99.99% 
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5. Conclusions 

This article particularly illustrates the automatic monitoring of broken rotor bars in induction 

motors. The proposed method is a combination of two techniques: signal processing based on 

CEEMDAN and machine learning based on MLP. The method first employs the vibration 

signal decomposition technique based on CEEMDAN to identify harmonics that indicate the 

location of broken rotor bars. A statistical study based on the calculation of the correlation 

coefficient for each extracted IMF is used to select the exact IMFs that hold information about 

rotor bar breakage defects. When choosing IMFs, only those with correlation coefficients 

greater than or equal to 0.2 are considered useful modes; this condition is met by IMF1, IMF2, 

IMF3, and IMF4. The next step is to reconstruct the signal through useful IMFs. After 

reconstructing the signal, we perform the global thresholding operation. We conduct a statistical 

study based on the calculation of two factors, the root mean square and the energy coefficient, 

for both the reconstructed signal before and after the overall application of thresholding to 

ensure good signal reconstruction. To meet this condition, we rebuild the signal after applying 

global thresholding (SRD). We then apply a spectral envelope analysis of the SRD to identify 

the BRB fault. At the end of this method, we applied the multi-layer perceptron (MLP) in order 

to localize the number of BRBs. The features used to train the MLP model are EC and fvb-, fvb+, 

2fvb-, 2fvb+, 4fvb-, 4fvb+, 6fvb-, 6fvb+, 8fvb-, and 8fvb+. The MLP's results demonstrate good 

performance, with a very high classification rate of 99.99%. 
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