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Abstract 

The gas-liquid two-phase acoustic emission (AE) signal contains rich flow information, but it is also accompanied 

by a large number of interference signals. In order to accurately extract the characteristics of gas-liquid two-phase 

flow, the removal of interference signals is very important. In this paper, AE technology is used to detect the signal 

of gas-liquid two-phase flow in vertical pipeline. The support degree of the sensor is checked by the trust function 

to confirm the consistency of the sensor and eliminate the wrong data. The decomposition level of wavelet base 

and wavelet transform is determined by four parameters such as signal-to-noise ratio. By comparing the wavelet 

exponential window smoothing method and the wavelet soft threshold method, the wavelet exponential window 

smoothing method which is more suitable for denoising effect is found out, and the real-time denoising effect is 

evaluated by using the measurement dynamic uncertainty theory. The results show that the wavelet exponential 

window denoising method improves the signal-to-noise ratio, reduces the energy leakage during denoising, and 

significantly improves the pseudo-Gibbs phenomenon and dynamic uncertainty can effectively evaluate the 

denoising effect of AE signals. 
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 Introduction 

Acoustic emission technology, as a new measurement means, can be used to evaluate the 

state of materials or detect the integrity of structures by detecting and analyzing the tiny sound 

waves generated by materials or systems under stress. This technology is widely used in various 

industries because of its non-invasive, real-time monitoring ability, and high sensitivity [1-5]. 

These studies involve AE signal characteristics [6-9] and also cover AE signal analysis [10-

12]. With the progress of science and technology and the deepening of research, acoustic 

emission technology has been further expanded in other application fields, one of which is the 

research and application in the field of multiphase flow [13-21]. Many efforts have been made 

in the field of gas-liquid two-phase flow in multiphase flow. Li Chaofan et al. [22] designed a 

multi-sensor based on near-infrared, AE sensor, and throat Venturi tube and applied it to gas-

liquid two-phase flow, proposing a new gas volume fraction model. Diao, Xu. et al. [23] 

proposed a variational mode decomposition method for detecting the existence and importance 

of leakage in fluid pipelines by improving signal denoising on the basis of adequate signal 

processing of AE signals. 

One of the main challenges of AE signal analysis is the existence of noise. In the actual 

acquisition process, there are different mechanical and electromagnetic noises in the 

environment. If the existing noise cannot be effectively eliminated, the accuracy of the signal 

will be affected. In recent years, researchers have employed various denoising techniques for 
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processing acoustic emission signals. Liu, Tong et al. [24] utilized the AE-WPD method for 

acoustic emission denoising. Yu, Aiping et al. [25] applied SOM neural networks for machine 

learning-based acoustic emission denoising, achieving significantly improved filtering effects 

compared to hardware-based filters. Kim, Jinki et al. [26] proposed an online acoustic emission 

signal denoising strategy using stochastic resonance (SR) in bistable system arrays. These 

studies have facilitated the extraction of useful information by effectively denoising acoustic 

emission signals. Therefore, the successful application of AE technology in gas-liquid two-

phase flow is determined by how to extract and remove redundant interference information and 

how to identify useful information from AE signals. 

Based on this, this study adopts the method of combining wavelet transform and exponential 

window smoothing method to carry out AE signal denoising processing and combines the 

uncertainty and diversity of AE signals. In this paper, the idea of dynamic uncertainty is 

innovatively introduced into the evaluation of AE denoising effect, and it is concluded that the 

noise removal method using the wavelet exponential window smoothing method improves the 

signal-to-noise ratio compared with the noise removal method using wavelet soft thresholding, 

and dynamic uncertainty can be used to evaluate the noise removal effect of AE signals. 

The remaining parts of this paper are organized as follows. In Section 2, the theoretical 

foundation of this paper is introduced. In Section 3, we establish the experimental system for 

the acoustic emission experiments. In Section 4, we process and analyze the experimental data, 

demonstrating the superiority of the wavelet thresholding method for denoising. In Section 5, 

we analyze the dynamic uncertainty of the collected data, accurately reflecting the real-time 

capabilities post-denoising, and confirm the feasibility of using dynamic uncertainty as a metric 

for evaluating the effectiveness of the denoising process. 

 Theoretical basis 

The basic model of exponential smoothing is as follows:  

 𝑠𝑘,𝑡(𝑡) = 𝑎𝑓(𝑡) + (1 − 𝑎)𝑠𝑘,𝑡(𝑡 − 1)  (1) 

Where 𝑓(𝑡) is the number of advance periods predicted, 𝑎 is weight coefficient and the range 

is from 0 to 1. 

The parameters are expressed as follows: 

 {

𝑠𝑘,𝑡
(1) = 𝑎𝑓(𝑡) + (1 − 𝑎)𝑠𝑘,𝑡(𝑡 − 1)

(1)

𝑠𝑘,𝑡
(2) = 𝑎𝑠𝑘,𝑡

(1) + (1 − 𝑎)𝑠𝑘,𝑡(𝑡 − 1)
(2)

𝑠𝑘,𝑡
(3) = 𝑎𝑠𝑘,𝑡

(2) + (1 − 𝑎)𝑠𝑘,𝑡(𝑡 − 1)
(3)

, (2) 

where 𝑠𝑘,𝑡
(1), 𝑠𝑘,𝑡

(2), 𝑠𝑘,𝑡
(3) is the first, the second, the third exponential smoothing values 

corresponding to the t th.  

𝑓𝑡+𝑚 = 𝐴𝑘,𝑡 + 𝐵𝑘,𝑡𝑚+
1

2
𝐶𝑘,𝑡𝑚

2, 𝑘 = 1,2,3, … 

 

{
 
 

 
 

𝐴𝑘,𝑡 = 3𝑠𝑘,𝑡
(1) − 3𝑠𝑘,𝑡

(2) + 𝑠𝑘,𝑡
(3)

𝐵𝑘,𝑡 =
𝑎𝑘,𝑡

2(1−𝑎𝑘,𝑡)
[(6 − 5𝑎𝑘,𝑡)𝑠𝑘,𝑡

(1)

−(10 − 8𝑎𝑘,𝑡)𝑠𝑘,𝑡
(2) + (4 − 3𝑎𝑘,𝑡)𝑠𝑘,𝑡

(3)

𝐶𝑘,𝑡 =
𝑎𝑘,𝑡

2(1−𝑎𝑘,𝑡)
(𝑠𝑘,𝑡

(1) − 2𝑠𝑘,𝑡
(2) + 𝑠𝑘,𝑡

(3))

, (3) 

where 𝐴𝑘,𝑡, 𝐵𝑘,𝑡, 𝐶𝑘,𝑡 is the 𝑡 th prediction coefficient, 𝑚 is the forecast lead time coefficient. 
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By constantly updating the forecast data, the exponential smoothing method are widely used 

in the economy. The model provides a good predictive effect on the data with certain trend, 

non-linearity, multi-factors and long-term. Data have the same characteristics in flow noise, so 

exponential smoothing can be considered as the best method to predict and update data in flow 

noise. According to wavelet theory, flow noise signal can be divided into two parts, one is 

composed of wavelet function, and the other is composed of scale function. 

 𝑓(𝑡) = ∑ ∑ 𝑑𝑘
𝑗
𝛹𝑗,𝑘(𝑡) + ∑ 𝑐𝑘

𝑛𝜙𝑗,𝑘(𝑡)𝑘∈𝑧𝑘∈𝑧
𝑛
𝑗=1   (4) 

Where n is the number of decomposition level, 𝑑𝑘
𝑗
 is the k component of the j level, 𝑐𝑘

𝑁 is 

the decomposition scale coefficient, 𝛹𝑗,𝑘(𝑡) is a basic wavelet function and 𝜙𝑗,𝑘(𝑡) is a scaling 

function. In this paper, the wavelet function is db function (compactly supported orthogonal 

wavelet), and the scaling function is exponential window smoothing function [27]. 

The binary discrete wavelet function generated by the wavelet generating function is 

expressed as: 

 𝛹𝑗,𝑘(𝑡) = 2
−
𝑗

2𝛹(2−𝑗 − 𝑘), (5) 

𝛹(𝑡) is a band-pass filter, in which the db function of wavelet function is expressed as: 

 Ψ𝑗,𝑘(𝑡) = ∑ 𝐶𝑘
𝑛+𝑘+1𝑌𝑘𝑛−1

𝑘=0  (6) 

The essential part of scaling function is the exponential smoothing function. The time 

domain varies sharply, and a narrow time window is adopted for non-stationary signals. The 

frequency domain window is narrow, and the temporal resolution is improved. This is stated 

as: 

 |�̂�(𝑤)|
2
= ∑ |�̂�(2𝑗𝑤)|

2∞
𝑗=1  , (7) 

 ∅𝑗,𝑘(𝑡) = 𝑎𝑌(𝑡) + (1 − 𝑎)∅𝑗,𝑘(𝑡 − 1) . (8) 

The basic wavelet function is used to decompose, and the exponential window smoothing 

function is used to predict and update the signal [28-29]. The reconstructed information can 

then be obtained by substituting the updated coefficients into (4). 

 f(t) = ∑ ∑ 𝑑𝑘
𝑗
(∑ 𝐶𝑘

𝑛+𝑘+1𝑌𝑘𝑛−1
𝑘=0 ) + ∑ 𝑎𝑌(𝑡) + (1 − 𝑎)∅𝑗,𝑘(𝑡 − 1)𝑘∈𝑧𝑘∈𝑧

𝑛
𝑗=1 . (9) 

 Construction of acoustic emission experiment system  

Acoustic emission technology uses a piezoelectric probe mounted on the surface of a 

material or component to receive elastic waves and convert them into electrical signals. Then 

the subsequent circuit to process is used and the detected electrical signal is displayed from 

which the internal conditions of materials or components are obtained. 

3.1. Construction of experimental system 

The experiments were conducted using the multi-phase flow experimental platform of Hebei 

University. Gas-liquid two-phase flow noise was acquired using the sensor highway III AE 

instrument (manufactured by American Physical Acoustics). The sampling rate was set at 

5MHz, with a total of 1048500 sampling points. The experimental probe's mounting position 

and the principle behind acquiring flow noise are illustrated in Fig 1. P1, P2, P3, and P4 

correspond to sensors 1, 2, 3, and 4 respectively. In the presence of two-phase flow in the 

pipeline, interactions between liquid-liquid interfaces, gas-liquid interfaces, and gas-liquid wall 
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generate acoustic emission (AE) signals that reflect the underlying mechanisms governing two-

phase flow behavior. By utilizing piezoelectric effect within the AE sensor probe, these two-

phase flow noise signals are converted into electrical signals. Subsequently, weak electrical 

signals are amplified through utilization of a sensor highway III acquisition device which 

records and displays them via a signal acquisition system before converting analog signals into 

digital ones for transmission to a desktop computer. 

3.2. Experimental Test 

In order to study the de-noising method, AE detection system is used to measure the static 

and flow conditions of single-phase water. 

The actual test system is shown in Fig. 2. 

P1

P2

P3

P4 Amplifier
Signal 

acquisition 

Record and 
display 

Wave 

source

Sensor：P1  P2  P3  P4   

Fig. 1. Schematic diagram of flow noise acquisition. 

 

Fig. 2. The actual test system. 

 Data analysis 

The principle of wavelet transforms, and exponential window smoothing is used to evaluate 

the dynamic uncertainty of noise signal in this paper. Firstly, the data from each sensor probe 

is read in, and the degree of support between sensors is determined by the trust function. When 

each sensor meets the support level, the data is retained; when it does not meet the requirements, 

the data is discarded. Then, the wavelet basis function and the decomposition level are 

confirmed, and the signal-to-noise ratio is used as the de-noising effect. The basis of evaluation 

is to ensure that data information is not lost. This is done by determining the input sensor data, 

setting the wavelet analysis de-noising parameters, and then starting wavelet exponential 

window smoothing de-noising. The effectiveness of de-noising is evaluated by dynamic 

uncertainty. 
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4.1. Sensor detection 

The measurement data of unstable performance cannot be determined for sensors. Jia et al 

used confidence distance to compare the measured data and to check the validity of the sensor 

[30]. While Akhoundi (Hans) used confidence function (2𝜎) to express the trust between 

sensors [31]. 

The confidence function of 2𝜎 is used to express the trust degree among sensors in this 

paper. The calculation formula is as follow: 

 𝑑𝑖𝑗 = 𝑒𝑥𝑝
[−
1

2

(𝑥𝑖−𝑥𝑗)
2

(2𝜎𝑖)
2 ]

,  (10) 

where 𝑥𝑖 and 𝑥𝑗 are measured values and 𝜎𝑖 is deviation. 

The obtained data are then solved to obtain the variance of the support degree of the sensor. 

Specific values are shown in Table 1. 

Table 1. Support level solution parameter (v). 

Serial number 1 2 3 4 

Measured value 0.0040 0.0040 0.0011 0.0005 

𝝈𝟐 variance（e-7） 0.0103 0.0045 0.0047 0.0076 

The data in Table 1 is taken into the 2𝜎 confidence function to calculate the trust matrix. 

 𝑑𝑖𝑗 = [

1.0000 0,9811 0.0028 0.9839
0.9577 1.0000 0.0000 0.8522
0.0000
0.9783

0.0000
0.9091

1.0000
0.0008

0.0000
1.0000

]  (11) 

From the trust matrix, it is apparent that the mutual support degree between sensor No. 1 and 

sensor No. 2 is high, while the support degree of sensor No. 4 is relatively low, and the support 

degree of sensor No. 3 is zero. Therefore, it can be determined that the No. 3 sensor is the fault 

sensor. 

4.2. Selection of Wavelet Functions 

For the choice of wavelet function, the property of wavelet function is theoretically analyzed, 

and the signal-to-noise ratio of wavelet function is compared from the angle of measurement 

value. 

By comparing the orthogonality, biorthogonality, compact support, symmetry and regularity 

of five wavelets, the properties of continuous wavelet transform, and discrete wavelet 

transform, it can be concluded that haar function has no regularity, db function has no 

symmetry, approximate regularity, biro’s property has no orthogonality and regularity, coif has 

approximate symmetry. db function has no regularity, and sym has approximate symmetry and 

no regularity. The specific properties are shown in Table 2. 

Table 2. Comparison of wavelet properties 

Function haar db bior coif sym 

Orthogonality ✓ ✓  ✓ ✓ 

Biorthogonality ✓ ✓ ✓ ✓ ✓ 

Compact support ✓ ✓ ✓ ✓ ✓ 

Symmetry ✓  ✓ — — 

Regularity  —    
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From the theoretical point of view, the flow noise signal measured by the AE system is a 

continuous signal. In order to satisfy the signal integrity as much as possible, three wavelets, 

db, sym and coif, are selected. 

Using coif, rbio, haar, birothogonal, db, symlets and dmey as the wavelet generating 

functions, and on the basis of the default decomposition level of five layers, the soft threshold 

processing method is used to de-noise, after which the corresponding data is obtained. 

The root means square error (RMSE), signal-to-noise ratio (SNR), smoothness index (r) 

and correlation coefficient (R) of the evaluation methods of wavelet de-noising quality have 

been previously used [32-35] as the evaluation indexes for determining the superiority of 

wavelet. 

The root means square error: 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ [𝑓(𝑖) − 𝑓(𝑖)]2 𝑛
𝑖=1 , (12) 

The signal-to-noise ratio (SNR): 

 𝑆𝑁𝑅 = 10 × 𝑙𝑔
∑ [𝑓(𝑖)]2𝑛
𝑖=1

∑ [𝑓(𝑖)−�̂�(𝑖)]
2𝑛

𝑖=1

, (13) 

The smoothness index (r): 

 𝑟 =
∑ [�̂�(𝑖+1)−�̂�(𝑖)]

2𝑛−1
𝑖=1

∑ [�̂�(𝑖+1)−𝑓(𝑖)]
2𝑛−1

𝑖=1

, (14) 

The correlation coefficient (R): 

 𝑅 =
𝐶𝑂𝑉(𝑓(𝑖),�̂�(𝑖))

𝜎𝑓(𝑖)𝜎�̂�(𝑖)
 , (15) 

where n is the length, 𝑓(𝑖) is the original signal, and �̂�(𝑖) is the data obtained after de-noising. 

The RMSE is close to zero, indicating the better de-noising effect. SNR is the ratio of energy 

to noise energy of data signals, and the criterion is that the larger the SNR is, the better. 

When the cross-correlation number is enlarged by 10 times, the evaluation criterion is that 

the correlation number is closer to 10, the better. Smoothness index can reflect the smoothness 

of reconstructed signal. Because the original signal has a good correlation, therefore, 

smoothness is an important index to judge the effect of anomaly data processing. The smaller 

the smoothness, the better the effect of anomaly data processing. 

Using the wavelet generating function coiflets, rbio, haar, birothogonal, db, symlets, dmey 

in the wavelet, on the basis of the default decomposition level of five, using soft threshold 

processing method to de-noise. 

From the Fig. 3, it can be seeing that the peak values of RMSE, SNR, R and r are reflected 

in bior and rbio functions, while coif, db, fk and sym functions are relatively stable. coif, db 

and sym are three kinds of wavelet basis functions, and the evaluation criteria of these three 

kinds of wavelet basis functions are compared again. 
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a) RMSE change curve 

 
b) SNR change curve 

 
c) R change curve 

 
d) r change curve 

 

Fig. 3. Coefficient change diagram. 
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It can be obtained from Table 3, db1 demonstrated the lowest RMSE, the highest SNR, a 

cross-correlation coefficient R close to 10, and a satisfactory smoothness index r. In comparison 

to other wavelet basis functions, signals processed with the db basis function exhibited superior 

overall performance.  

Table 3. Evaluation index. 

Function RMSE SNR R r 

coif1 0.90822× 10−4 13.6823 9.1264 0.98969× 10−4 

coif2 0.90827× 10−4 13.6819 9.1641 0.441350× 10−4 

coif3 0.90827× 10−4 13.6819 9.1658 0.396330× 10−4 

coif4 0.90826× 10−4 13.6820 9.1543 0.386223× 10−4 

coif5 0.90824× 10−4 13.6822 9.1362 0.384440× 10−4 

db1 0.90796× 10−4 13.6848 9.1699 0.769570× 10−4 

db2 0.90817× 10−4 13.6828 9.0830 1.072400× 10−4 

db3 0.90826× 10−4 13.6820 9.1533 0.552710× 10−4 

db4 0.90827× 10−4 13.6819 9.1651 0.451070× 10−4 

db5 0.90822× 10−4 13.6824 9.1212 0.426450× 10−4 

db6 0.90823× 10−4 13.6823 9.1326 0.407490× 10−4 

db7 0.90827× 10−4 13.6819 9.1660 0.391100× 10−4 

db8 0.90824× 10−4 13.6822 9.1366 0.392480× 10−4 

db9 0.90821× 10−4 13.6824 9.1188 0.392700× 10−4 

db10 0.90826× 10−4 13.6820 9.1553 0.381420× 10−4 

sym2 0.90817× 10−4 13.6828 9.0830 1.072400× 10−4 

sym3 0.90826× 10−4 13.6820 9.1533 0.552710× 10−4 

sym4 0.90827× 10−4 13.6819 9.1614 0.460940× 10−4 

sym5 0.90821× 10−4 13.6824 9.1181 0.427190× 10−4 

sym6 0.90826× 10−4 13.6820 9.1597 0.401010× 10−4 

sym7 0.90825× 10−4 13.6821 9.1478 0.395890× 10−4 

sym8 0.90826× 10−4 13.6819 9.1591 0.386670× 10−4 

4.3. Selection of wavelet decomposition layers 

With db1 as the wavelet function, the soft threshold method is used for wavelet de-noising. 

After data reconstruction, the de-noised data is derived, and the signal-to-noise ratio is used as 

the index for selecting the number of wavelet decomposition layers. 

Table 4. Evaluation index after db1 layering. 

Function RMSE SNR R r 

db1-1 0.65278× 10−4 16.5508 0.6997 0.571300000000 

db1-2 0.83772× 10−4 14.3842 0.3993 0.107200000000 

db1-3 0.88770× 10−4 13.8809 0.237 0.014800000000 

db1-4 0.90111× 10−4 13.7506 0.1656 0.003800000000 

db1-5 0.90796× 10−4 13.6848 0.1121 0.000769570000 

db1-6 0.91074× 10−4 13.6583 0.0807 0.000201920000 

db1-7 0.91221× 10−4 13.6443 0.0576 0.000050340000 

db1-8 0.91295× 10−4 13.6373 0.0413 0.000012812000 

db1-9 0.91332× 10−4 13.6337 0.0298 0.000003146600 

db1-10 0.91350× 10−4 13.6320 0.0223 0.000000852220 
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In the case of different layers of wavelet basis function db1, the processed data and the 

original signal data are substituted into the signal-to-noise ratio formula to obtain the variation 

of signal-to-noise ratio of db1 with the increase of decomposition layers. It can be seen from 

the Table 4 that the signal-to-noise ratio shows a gradual decreasing trend with the increase of 

layers. The signal-to-noise ratio data changes greatly from the first layer to the fourth layer and 

tends to be stable from the sixth layer to the twelfth layer. 

Among AE noise, disturbance noise mainly exists in low-frequency signals, and the main 

flow noise exists in high-frequency signals. In wavelet de-noising, with the increase of 

decomposition layers, the de-noising of low-frequency signals is further optimized. At the same 

time, from the point of view of data calculation, the decomposition level to the 6th level can be 

seen as the best. Therefore, it can be concluded that the number of wavelet decomposition layers 

is 6. Finally, it is determined that the wavelet function used for de-noising is db1, and the 

decomposition layer is 6 layers. 

4.4. Wavelet exponential smoothing method for de-noising  

For the data collected by AE, it has the characteristics of real-time and large sample size. In 

the process of data processing, measurement and calculation of a period of time fragment is 

usually performed. When the time fragment is intercepted, energy leakage will occur in the 

signal. In addition, when wavelet analysis is carried out, the time domain is transformed into 

frequency domain, and energy leakage is also generated. When FFT transform is applied, there 

will be hurdle effect. These two energies cannot cancel each other. In this case, when FFT is 

performed with the help of window functions, there will be gradual and continuous reduction 

energy leakage and fence effect. 

In contrast to Table 4, for different window functions, using mean square deviation and 

signal-to-noise ratio as the selection conditions, it is concluded that the wavelet exponential 

window smoothing method has the RMSE and the largest SNR, which is suitable for de-noising, 

so the window smoothing function is selected. 

Table 5. Comparision of parameters. 

Method RMSE SNR 

Exponential  7.7181e-09 13.9567 

Gaussian  8.2179e-09 13.6842 

Box 8.0778e-09 13.7589 

Lowess 7.9921e-09 13.8029 

Sgolay 8.5919e-09 13.4927 

Medfilt 8.3580e-09 13.6085 

 

As shown in Table 5, the six window smoothing functions, exponential window function, 

Gaussian window function, box window function, Lowess window function, Savitzky-Golay 

filter window function and median window function, are selected in the case of window 

function selection. In order to reduce energy leakage and Pseudo-Gibbs (Pseudo-Gibbs effect) 

as [36-37], according to the properties of mean square deviation and signal-to-noise ratio, the 

smaller the mean square deviation, the greater the signal-to-noise ratio, which shows the better 

de-noising effect. By observing the above Table 5, it can be concluded that, amongst all the six 

window methods, the exponential sliding window function method has the smallest mean 

square deviation and the largest signal-to-noise ratio. Therefore, the exponential sliding window 

method is used to further reduce energy leakage and fence effect. 

The db1 is chosen as the wavelet function, and the decomposition level is 6 layers. While 

the exponential window smoothing method in soft threshold is used for de-noising. Under 
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different de-noising conditions of wavelet de-noising and wavelet exponential window 

smoothing, the data collected by the sensors No.1, No.2 and No.4 with support degree are 

compared by the RMSE and SNR the results of which are shown in the Table 6. 

 

a) Original data spectrogram b) Wavelet spectrogram 
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c) Wavelet Guassian window smooth spectrogram d) Wavelet box window smoothing spectrogram 
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e) Wavelet index window smoothing spectrogram  
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Fig. 4. Sonogram of different methods. 
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From the data in Table 6, it can be seen that the growth rate of signal-to-noise ratio of probe 

1 is 139.31%, probe 2 is 104.02%, and probe 4 is 88.13%. 

Table 6. Comparison of parameter 

Probe Parameter method1 method2 

First 
RMSE 8.2665e-09 9.8950e-11 

SNR 13.6585 32.6864 

Second 
RMSE 3.8953e-09 8.3954e-11 

SNR 15.9126 32.4649 

Fourth 
RMSE 3.3811e-09 8.1452e-11 

SNR 18.2882 34.4049 

 

The original data and the processed data are respectively applied to the chaos, and the 

resulting image of 3D is shown in the Fig. 5. 

In Fig. 5, numerous sub-chaotic systems are visible without denoising, illustrating the 

multidimensional chaotic nature of signals before and after denoising. Before denoising, the 

state appears chaotic and disordered, making it challenging to extract effective signals. 

However, upon applying the Wavelet Exponential Window Smoothing Method for denoising, 

the resulting images become notably clearer, with a significant reduction in chaos. This 

enhances multidimensional consistency, facilitating the extraction of effective signals. The 

denoising efficacy demonstrated aligns with the findings in Table 6, which also utilized the 

Wavelet Exponential Window Smoothing Method. Fig. 5 vividly illustrates the denoising 

effectiveness of this method through the chaos plots. 

In Fig. 4, representing the sonogram of different methods, various colors are used to denote 

high and low-frequency signals, transitioning from low to high frequencies. In the original 

signal, low-frequency signals may be embedded within high-frequency ones. Since the test 

conditions involve pure water at rest, removing low-frequency signals is necessary for data 

processing and denoising. Initially, low-frequency signals are scattered within the original noisy 

signal. After wavelet soft-threshold denoising, prominent low-frequency signals are removed, 

yet there's noticeable energy leakage between decomposed signals. Wavelet-Gaussian window 

smoothing denoising reduces energy leakage but doesn't effectively handle low-frequency noise 

signals. Therefore, the wavelet box smoothing denoising method is employed to eliminate low-

frequency noise. Though slightly inferior to wavelet soft-threshold denoising in preserving 

frequency signals, it minimizes energy repetition between signal layers. Notably, the wavelet 

  

a) Image obtained by applying initial data to chaos. b) Image obtained by applying Processed data to chaos. 

Fig. 5. Three-dimensional image applied to chaotic system. 
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exponential window smoothing denoising method effectively removes low-frequency signals 

and reduces energy leakage, yielding promising results. 

 Analysis of dynamic uncertainty 

For AE signal denoising, wavelet transform is a common technique, but in the process of 

wavelet decomposition and reconstruction, there will be energy leakage and fence effect at the 

critical truncation. Therefore, the evaluation of noise removal effect is a key factor affecting 

the analysis of gas-liquid two-phase flow. By summarizing the previous experience, there are 

six kinds of quality evaluation of wavelet noise removal: RMSE is used for evaluation [34]; 

Use correlation number to evaluate [35]; The SNR is used as the evaluation standard [36], and 

the smoothness (r), which can reflect the smoothness of the reconstructed signal, is used as the 

evaluation index [37]. The correlation coefficients were calculated by equal measures and 

added together, and the overall evaluation method was used [38]. The denoising quality of 

wavelet can be effectively evaluated by using the uncertainty of the estimation of signal 

reconstruction interval [39]. Here we propose a new method: dynamic uncertainty is applied to 

the evaluation of noise signal. 

5.1. Theoretical Analysis of Wavelet Signal Evaluation Based on Dynamic Uncertainty  

Recently, there are mainly parameters to evaluate de-noising signal: Mean absolute error 

(MAE), mean square error (MSE), RMSE, SNR and peak signal-to-noise ratio (PSNR). 

However, the energy leakage phenomenon is mainly manifested in the process of wavelet 

decomposition. If only the integrity analysis is carried out, the shortcomings of the above 

denoising methods in the intermediate process cannot be reflected. Compared with static 

measurement, dynamic data collected by AE devices has the characteristics of real-time, 

dynamic, and random, and its influencing factors are more complex. In addition, the dynamic 

measurement itself has the advantage of improving the accuracy of digital calculation and the 

reliability of measurement results. Therefore, the dynamic uncertainty method should be 

selected to evaluate the dynamic denoising performance. 

In order to meet the requirement of real-time evaluation in uncertainty analysis of 

deterministic components, and considering factors such as variance, efficiency, and robustness, 

the least squares fitting method in uncertainty theory was adopted. 

Step 1: subtracting the deterministic component from the original data to obtain a residual. 

 𝑣(𝑖) = 𝑥(𝑖) − 𝑥𝑐(𝑖) (16) 

Where 𝑥(𝑖)is the original data, 𝑥𝑐(𝑖)is the deterministic component. 

Step 2: The standard deviation of unit weight is taken: 

 𝜇(𝑖) = √
∑ 𝑣2(𝑖)𝑛
𝑖=1

𝑛−2
  (17) 

Step 3: The uncertainty of deterministic components of i point is obtained: 

 𝑠𝑐(𝑖) = {
𝜇2(𝑖)

𝑛𝑠𝑖(𝑖)
(∑ 𝑡𝑖

2 + 𝑡𝑖
2𝑛 − 2𝑡𝑖 ∑ 𝑡𝑖)}

2

 (18) 

Where 𝑛 is the length of fitting data and 𝑖 is the corresponding time of fitting. 

 𝑠𝑖(𝑖) = ∑ 𝑡𝑖
2 −

1

𝑛
(∑ 𝑡𝑖)

2  (19) 

 𝑌(𝑖) = 𝜔𝑝1𝑌(𝑖 − 1) + 𝜔𝑝2𝑌(𝑖 − 2) + ⋯+ 𝜔𝑝𝑝𝑌(𝑖 − 𝑝) + 𝜀(𝑖)  (20) 
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Where 𝑝 is the order, 𝜔𝑝𝑖 is the estimated parameter, 𝜀(𝑖) is the error term for stochastic 

components. 

So, the final randomness uncertainty can be expressed as: 

 𝜀(𝑖) = 𝑌(𝑖) − 𝜔𝑝1𝑌(𝑖 − 1) − 𝜔𝑝2𝑌(𝑖 − 2) − ⋯− 𝜔𝑝𝑝𝑌(𝑖 − 𝑝)  (21) 

 𝑠𝑟(𝑖) = 𝜀(𝑖)  (22) 

Step 4: the dynamic uncertainty is obtained: 

 𝑠(𝑖) = √𝑠𝑐2(𝑖) + 𝑠𝑟2(𝑖)  (23) 

5.2. Data comparison 

Acoustic emission signal acquisition system has 1048500 sampling points, in order to clearly 

highlight the de-noising effect, 90 sampling points were randomly intercepted. Fig. 6 is showing 

a comparison of original data and noise reduction data from each sensor. 

a) Comparison of sensor data No. 1 b) Comparison of sensor data No. 2 
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c) Comparison of sensor data No.4 
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Fig. 6. Comparison of sensor data. 

Since the original signal contains noise, the useful signal was obscured by noise. Comparing 

the raw data with the denoised data of various sensors, it is evident from Fig. 6 that the signal 

fluctuation range of the raw data is large, between -6×10-4 V to -3×10-4 V. This substantial 

fluctuation indicates that the sensor's raw data contains noise signals, making it difficult to 

distinguish the useful signal and affecting the accuracy and reliability of data analysis. 

However, the signal processed through the wavelet index window smoothing method tends 

to stabilize with a smaller fluctuation amplitude, stabilizing around -4×10-4 V with almost no 

fluctuation, significantly restoring the signal's authenticity. The results demonstrate that the 

wavelet index window smoothing method can effectively remove noise from useful signals, 

showcasing the superiority of the wavelet index window smoothing method for denoising. 
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5.3. Comparition of dynamic uncertainty of data  

The Fig. 7 shows the dynamic uncertainty obtained for sensors 1 and 4 using both wavelet 

soft thresholding for noise reduction and wavelet index window smoothing methods. It can be 

observed that in the 10 ~ 100 range, wavelet soft thresholding introduces additional 

discretization error, leading to significant energy leakage and the pseudo-Gibbs phenomenon. 

In contrast, wavelet index window smoothing for noise reduction displays relatively stable 

performance in the 10 ~ 100 range without significant fluctuations, indicating no obvious 

energy leakage or pseudo-Gibbs phenomena. 

Regarding the dynamic uncertainty, through the formulas (16)-(23) in section 5.1, it can be 

calculated that the dynamic uncertainty reduction for Sensor 1 using wavelet index window 

denoising compared to wavelet soft thresholding denoising is 47.9%, and for Sensor 4, it is 

52.3%. This indicates that the signal fidelity through wavelet index window denoising is better, 

with lower noise and error, the signal's fluctuation amplitude is smaller, displaying more stable 

and reliable performance, and better denoising effects. A smaller amplitude changes and lower 

noise lead to high-quality signal performance indicated by minimal energy leakage. Similarly, 

when dynamic uncertainty is low, the signal processing within the window application and 

Fourier transform process is more precise, thereby improving the pseudo-Gibbs phenomenon.  

a) The smooth dynamic uncertainty of No.1. b) The smooth dynamic uncertainty of No. 4. 
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Fig. 7. Comparison of the smooth dynamic uncertainty of No. 1 and No.4 wavelet exponential window. 

 Conclusions 

De-noising analysis is an important step in gas-liquid two-phase flow AE signal processing. 

In this paper, AE data are obtained by experiment, and wavelet exponential window smoothing 

method is used in de-noising analysis. Dynamic uncertainty is used to evaluate the de-noising 

effect. Using the trust degree function to test the degree of support of the sensor can enhance 

the credibility of the experimental data. Based on the growth rate of SNR of the probes, it is 

apparent that the de-noising method using wavelet exponent window smoothing method 

improves the SNR compared with wavelet de-noising. Correct reflection of wavelet exponential 

window de-noising method can reduce energy leakage in the process of de-noising, and Pseudo-

Gibbs phenomenon has been significantly improved. Based on the analysis of the experimental 

results, it can be concluded that the proposed method is feasible and can be used for de-noising 

analysis of gas-liquid two-phase flow AE signal processing. 
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