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Abstract 

To solve the problem of inaccurate estimation of relative errors in real-time monitoring of charging pile meters, a 

model is proposed based on the wavelet transform and damped recursive least squares (WT-DRLS) method to 

assess the measurement error and uncertainty of electric meters. An energy conservation equation for the charging 

pile power system is established, along with two variables representing energy conversion efficiency and 

measurement error. The estimated value of the energy conversion efficiency is obtained by using wavelet transform 

for noise reduction. Subsequently, a damped recursive least square method with a sliding window is developed to 

exclude disturbances from circuit load flow and external environmental factors, which enables the calculation of 

the measurement uncertainty of electric meters. The proposed method supports the online monitoring of charging 

pile meter performance. Data from an actual DC charging station are collected for validation. The experimental 

result shows that the proposed method is effective and stable and outperforms the state-of-the-art methods. 

Keywords: electric vehicle charging piles, electric meters, wavelet transform, damped recursive least squares 

method, measurement uncertainty. 

1. Introduction 

Over time, the internal electronic components of electric vehicle (EV) charging pile meters 

undergo degradation due to thermal, electromagnetic, mechanical, and aging effects. This 

degradation compromises the reliability of their measurement results, which impacts the 

fairness and integrity of billing and affects the interests of numerous charging users [1, 2]. 

According to the prevailing electric meter rotation standards in various countries, charging pile 

meters at the end of their operational cycle are slated for replacement [3]. However, this practice 

can lead to the unnecessary disposal of meters that are still functioning accurately, causing a 

considerable waste of hardware resources. Moreover, it places a substantial burden on electrical 

grid metering centers for verification, which leads to significant human and material resource 

expenditure. Given the uncertainty of actual on-site operating conditions, the measurement 

error of electric meters is susceptible to temperature, harmonics, voltage changes, and 

frequency fluctuations [4]. Consequently, determining the deviation status of smart meter 

measurements and controlling their performance becomes a critical concern. 

Presently, the overall operation status of charging piles is generally inferred based on a 

certain proportion of sampling inspection, which decides whether to replace the entire group or 

to maintain their usage [5]. Yet, the constrained scope of random sampling carries the risk of 

omitting meters that have surpassed error thresholds. Additionally, the error status of 

functioning smart meters remains undetected between sampling intervals. As a result, meters 
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exceeding their limits might operate for prolonged durations [6, 7]. Consequently, leveraging 

existing electricity measurement data to devise an efficient and precise method to detect 

measurement errors in smart meters is important. 

Recently, the proliferation of smart grids has enhanced the availability of data for power 

companies, which has facilitated the adoption of online monitoring methods to evaluate the 

measurement performance of charging facilities. Such methods primarily involve the 

development of energy conservation models and the application of relevant algorithms to assess 

the relative error of electric meters [8, 9]. Yip et al. [10] designed two linear regression-based 

algorithms to analyse users' energy usage behaviour and determine their anomalous 

coefficients. This allows for the detection of defective smart meters in substations and 

identification of faulty ones. However, such method does not provide a specific error estimation 

for smart meters. Kong et al. [11] proposed an online estimation method for determining the 

operational error of meters. This method uses clustering to screen similar measurement data of 

each meter, and then establishes relationships between the master meter, submeters, and line 

losses. Finally, the parameters are estimated by a dual-parameter recursive least squares 

algorithm. However, the model is susceptible to ill-conditioned problems. Liu et al. [12] 

employed decision trees to filter abnormal data and classify data based on estimated line loss 

rates. They created an operational error analysis matrix for electric meters to remotely estimate 

the operational error of smart meters. Ma et al. [13] considered severe measurement errors in 

electric meters operating under extreme natural conditions. They developed an improved kernel 

support vector regression and optimized adaptive genetic algorithm to propose a new 

multisource feature fusion framework for error prediction. However, the method only has a 

monthly temporal resolution and cannot achieve real-time prediction. Additionally, the error-

prone voltage method is used to construct a network loss parameter model, which leaves room 

for improvement in applicability and accuracy.  

With the ongoing advancements in deep learning, researchers have started using neural 

networks to analyse the measurement performance of smart electric meters [14, 15]. Duan et 

al. [16] proposed a novel recursive neural network prediction algorithm that incorporates data 

decomposition techniques and error decomposition correction methods, although it does not 

address hyperparameter tuning. Sehovac et al. [17] developed a sequence-to-sequence neural 

network prediction model to improve the accuracy of long time series prediction. Liu et al. [18] 

proposed a method based on long short-term memory networks and improved convolutional 

neural networks to detect faulty smart electric meters. However, this approach requires 

additional information such as meter voltage and current, which imposes higher requirements 

for data collection and storage devices and limits its widespread application. 

Although the aforementioned researchers have proposed valuable ideas for the online 

detection of electric meter measurement performance, there are still several limitations:  

1) Estimating line losses often requires the structural parameters of the distribution network, 

without which reliable results cannot be obtained.  

2) Directly incorporating line losses into the energy conservation model often leads to 

significant errors due to the frequent and intense variations in line losses, which greatly 

affects the estimation of meter relative error.  

3) Due to the influence of circuit load flow and network operating conditions, each estimation 

of meter relative error experiences substantial fluctuations, reducing the stability, accuracy, 

and applicability of traditional models. 

To address these issues, this paper proposes an online monitoring method to measure the 

performance of charging pile electric meters based on wavelet transform and damping recursive 

least squares (WT-DRLS). This method offers several main contributions. First, the electric 

grid system structure of charging piles, characterized by its simplicity with short circuit lengths 

and absence of additional appliances, permits the neglect of line losses. However, the 
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measurement uncertainty estimation of charging piles, unlike traditional distribution network 

systems, exist the problem of calculating energy conversion efficiency. In response, this paper 

adopts a system identification approach and applies wavelet transform to deal with the observed 

values of energy conversion efficiency. Second, the damped recursive least squares method is 

employed to address noise disturbances in relative error. Last, a sliding window design is 

incorporated for the calculation of measurement uncertainty in electric meters, facilitating the 

online monitoring of charging pile meter performance. 

2. Estimation of Energy Conversion Efficiency Based on Wavelet Transform 

2.1. Establishment of Energy Conservation Equation for Charging Pile Electric Grid 

System 

Compared to traditional distribution network systems [19-21], charging stations have 

simpler electric grid lines. The topology structure, as shown in Fig. 1, demonstrates that each 

charging pile is equipped with a submeter to monitor electric energy consumption while 

charging electric vehicles. The master meter is connected to all charging piles, transmitting data 

collected from the submeters and master meter to the information collection platform through 

a local area network. Unlike household electric grids, the electric grid system of charging piles 

does not have complex transmission lines, which results in negligible line loss. However, the 

submeters at charging piles record electric energy consumption during vehicle charging, which 

exist the conversion efficiency. Therefore, the relative error of the submeter is expressed as 

follows: 

 ,  (1) 

where  is the observed value of consumed energy,  is the true value of consumed energy, 

and  is the conversion efficiency. 

 

Fig. 1. Topology of electric vehicle charging pile. 

For electric energy data, since electric meters measure the cumulative electricity 

consumption on their branch, it is necessary to perform first-order differencing to obtain the 

observed value of energy consumption at the charging piles: 

 ,   (2) 

where  is the energy reading of the electric meter at the i-th sampling moment. 

From this, the error coefficient for the m-th submeter is constructed as follows: 
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  ,   (3) 

Finally, the process of the energy conservation equation for the electric grid system 

composed of charging piles is as follows: 

    (4) 

where  is the total energy consumed by all charging piles during the t sampling period and 

 is the energy consumed by the m-th charging pile during the t sampling period. 

During the initial and final phases of charging, the charging efficiency significantly 

changes and does not adequately reflect the current measurement performance of the smart 

meter. However, during the stable charging process, the energy conversion efficiency should 

remain constant. Therefore, the data from each entry into stable charging are used for 

calculation, assuming a constant conversion efficiency . To prevent coupling of the two 

variables in the calculation process, the energy loss can be extracted from the error coefficient 

because it is related to the total energy consumption. Hence, the energy conservation equation 

can be reformulated as follows: 

    (5) 

where  is the column vector composed of ,  is the matrix composed of , and  is 

the system error term. 

2.2. Estimation of Energy Conversion Efficiency 

As energy loss is directly related to the total consumed energy of all charging piles, (4) 

cannot be solved directly using the least squares method. It is necessary to first calculate the 

energy conversion efficiency, which is associated with the energy conversion loss. The 

observed value of the energy conversion loss  is given by: 

    (6) 

where  is the total energy consumed by all charging piles and  is the energy consumed by 

the ith charging pile. 

It is assumed that the energy conversion efficiency  comprises the true value of the energy 

loss, the noise in the energy conversion loss, and the error noise: 

    (7) 

where  is the noise in the energy conversion loss and  is the error noise, both of which 

have zero means but different variances. 

 Therefore, this paper utilizes the wavelet transform to denoise the energy conversion 

efficiency obtained from (7). After wavelet decomposition, the wavelet coefficients with larger 

amplitudes are considered useful signals, while those with smaller amplitudes are generally 
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noise. It is assumed that the wavelet coefficients of useful signals are greater than those of noise. 

The selection of a threshold value is crucial in wavelet denoising. Thus, a heuristic threshold 

rule is applied. When the signal-to-noise ratio is large, the unbiased risk estimation rule is 

utilized: 

   (8) 

    (9) 

where  is the length of the energy conversion efficiency series. 

When the signal-to-noise ratio is low, a universal threshold rule is used: 

    (10) 

where  is the standard deviation of the noise signal and  is the total number of wavelet 

coefficients. 

The heuristic threshold rule used in this article is calculated as follows [22, 23] : 

    (11) 

    (12) 

    (13) 

where  is the threshold obtained from the unbiased risk estimation rule and  is the threshold 

obtained from the universal threshold rule. 

After determining the threshold rule, the wavelet denoising process for the energy 

conversion efficiency series can be conducted in three steps: 

1) An appropriate wavelet base function and decomposition level are selected to perform 

a wavelet orthogonal transform on the series, decomposing it into different frequency 

sub bands. 

2) Nonlinear threshold processing is applied to the high-frequency wavelet transform 

coefficients obtained at each decomposition level, while the low-frequency coefficients 

are left unchanged. 

3) The wavelet inverse transform is performed using the low-frequency coefficients of the 

final layer of decomposition and all the processed high-frequency coefficients to obtain 

the estimated value of the energy conversion efficiency. 

3. Estimation of Measurement Uncertainty Based on Damped Recursive Least Squares 

and the Sliding Window Algorithm 

3.1. Estimation of the Relative Error 

After applying wavelet denoising, the energy conversion efficiency from (5) can be utilized 

to solve for the error coefficients. To account for the influence of the power system load flow 

and current disturbances, the damped recursive least squares (DRLS) method is employed to 

determine these error coefficients. 
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The model input matrix consists of the observed matrix  of the energy consumed by the 

charging piles and the total consumed energy matrix . The model parameter matrix is set as 

follows: 

    (14) 

The energy conservation equation can be rewritten as follows: 

    (15) 

where  represents the undetectable noise term with a mean of 0 and is unaffected by the model 

parameters. 

Equation (15) can be solved using the DRLS method [7] . The purpose of adding a damping 

coefficient is to penalize the objective function when the difference between the estimates at 

times t and (t - 1) increases, thus limiting the range of parameter estimation changes, reducing 

environmental disturbances, and suppressing the volatility of the solution. The objective 

function  is: 

  (16) 

    (17) 

where  is the weight matrix and  is the weight factor. When , the weight of the 

historical data decays exponentially.  represents the estimated model parameters, and  is 

the damping factor. 

Setting the first derivative of  with respect to  to zero minimizes the objective 

function. The final parameter estimation process for the DRLS method is as follows: 

    (18) 

where  is the covariance matrix, defined as: 

    (19) 

3.2. Calculation of Measurement Uncertainty 

The solution from (18) provides the current moment parameter estimates. However, the 

relative error of electric meters fluctuates during actual measurement. Thus, it is necessary to 

calculate the measurement uncertainty of the meter to assess its stability. 

Assuming that the measurement performance of the electric meter does not change in a 

short period, the measurement uncertainty evaluation method can be applied to a sliding 

window of length  [24, 25] , which can be as follows: 

    (20) 

    (21) 

where  is the matrix of estimated relative errors for a submeter,  is the mean relative error 

for the current sliding window, and  is the measurement uncertainty. k is the expansion 

coefficient related to the confidence level. 
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Finally, the measurement uncertainty of the meter is represented as . The operational 

performance of the meter can be assessed based on whether the limits of measurement 

uncertainty exceed national standards. If the meter is within normal limits, monitoring 

continues. However, if the limits are exceeded, the operation and maintenance department 

should be alerted for onsite verification to determine whether the charging pile meter needs to 

be replaced. The complete process of online monitoring of charging pile measurement 

performance is depicted in Fig. 2. 

 

Fig. 2. Charging pile measurement performance analysis flowchart. 

4. Experimental Case Study 

4.1. Calculation of the Energy Conversion Efficiency 

This model is focused on conducting a measurement error and uncertainty analysis of DC 

charging piles. To verify the effectiveness of the proposed method, data collected from a DC 

charging station in 2022 is utilized for experimentation. The measurement and acquisition 

system is shown in Fig. 3. The setup consists of one DC energy metering collection device 

(Master) with six DC charging piles situated beneath it, with a sampling period of 15 min. There 

is a communication unit in every meter that transfers necessary electric parameters to the 

concentrator via Lora wireless. Then, the concentrator transmits all connected data to the 

information acquisition platform by 4G techniques. A total of 60 data points for the charging 

piles are collected for validation. 

 

Fig. 3. The measurement and acquisition system. 
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Initially, data for 672 sampling periods, equivalent to 7 days, were collected. Given that 

electricity is a cumulative measurement, a preprocessing step involving first-order differencing 

was carried out. Additionally, any randomly encountered missing or outlier values during data 

collection and transmission were removed prior to inputting the data into the model. 

Subsequently, the observed values of energy conversion efficiency for the charging piles were 

calculated as Section 2, as depicted in Fig. 4. The red dotted lines are the upper and lower limits 

of 3-sigma, indicating that the observed data contains a large amount of random noise and 

unreasonable observed values. For example, the energy conversion efficiency at point 1 reaches 

100.536%, which exceeds 100%. To address this, wavelet denoising was performed, resulting 

in estimated energy conversion efficiency values for the charging piles, as shown in Fig. 5. The 

estimated values are largely stable at 94.04%. This aligns with the assumption in Section 2 that 

the energy conversion efficiency during steady charging remains constant. If the filtered curve 

shows obvious fluctuations, it indicates that the charging system has problems and requires 

timely maintenance by staff. Furthermore, laboratory field tests conducted on this type of DC 

charging pile demonstrated an energy conversion efficiency of 94.69%, which is close to the 

results calculated in this study. This validates the feasibility of the constructed model. 

 

Fig. 4. Observation of energy conversion efficiency 

of charging pile. 

 

Fig. 5. Estimation of the energy conversion 

efficiency of the charging pile. 

4.2. Comparative Analysis of Experimental Results 

The calculated energy conversion efficiency was incorporated into (5), and the DRLS 

method was utilized to solve for the estimated relative errors. The model parameters are 

presented in Table 1. The root mean square error (RMSE) and mean absolute error (MAE) are 

utilized as evaluation metrics. These metrics are defined as follows[26]: 
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Table 1 Parameters of WT-DRLS. 

Typ  Param t r  

      t tr    or        9 

      t            hi   3 

       i i g  i  o     gth 672 

     r    t     rt i ty   i i g  i  o     gth 96 

   pi g    tor 0.005 

  ight    tor  0.7 

 

To validate the effectiveness of the proposed model, comparisons were made with the limit 

memory recursive least squares method (LMRLS), damping recursive least squares method 

(DRLS), and K-means-BP models. As shown in Fig. 6, the LMRLS and K-means-BP models 

demonstrated significant deviations between their estimated and actual values, with some 

estimates surpassing the error limit of 2%. This has the potential to result in misjudgement of 

how electric meters function normally. The DRLS model also exhibited lower accuracy. Based 

on the evaluation metrics presented in Table 2, the proposed model achieved an RMSE of 

0.3392% and an MAE of 0.2478%, outperforming the comparative models. 

a) WT-DRLS b) LMRLS 

  
c) DRLS d) K-means-BP 

  

Fig. 6. Relative error estimation results for different models. 
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Table 2. Comparison of performance evaluation indicators of different models. 

M d l RMSE(%) MAE(%) 

        0.3392 0.2 78 

      0.855  0.666  

      .0053 0.8589 

K       B   .0 2  0.9277 

 

Considering that Fig. 6 represents a single calculation of average relative error, it was 

observed that the calculation results for each meter exhibited significant variation. Given the 

unlikelihood of an actual electric meter's performance changing within a short period, it is 

necessary to calculate the meter's uncertainty to accurately represent its measurement 

performance. To this end, the sliding window size was set to 96 relative errors, and calculations 

were conducted for meter number 1 using various models, as shown in Table 3. The LMRLS 

and K-means-BP models resulted in larger uncertainty intervals, indicating poor model 

stability. In contrast, the proposed model produced a smaller uncertainty interval that closely 

aligned with the actual measured uncertainty. This demonstrates the model's strong resistance 

to power system load flow and external environmental disturbances and robustness and reduced 

likelihood of misjudging or missing the measurement performance of electric meters. 

Table 3. Comparison of measurement uncertainty between different models. 

M d l M a ur m nt unc rtainty 

(%)  r         0.78  0. 37  

        0.7359 0. 759 

      0.9 6 0.8372 

      0. 227 0.2887 

K       B   .236 0.6083 

5. Conclusions 

Online monitoring of the measurement performance of charging piles plays a crucial role in 

safeguarding the interests of both charging users and operational and maintenance departments. 

However, the state-of-the-art methods, which are susceptible to power system load flow and 

environmental factors, fail to fully meet practical application requirements. As a result, this 

paper proposes a WT-DRLS method to monitor the measurement performance of electric 

meters. The proposed method first removes system noise and error noise using wavelet 

transform from the perspective of system identification, in order to solve the energy conversion 

efficiency of DC charging piles during charging and determine whether they are in a normal 

charging state. Secondly, DRLS is used to solve the energy conservation equation for accurate 

identification of error parameters. Finally, the relative error and measurement uncertainty are 

calculated to assess the operating status of electric meters, thereby enhancing the accuracy of 

evaluating meter measurement performance. Through comparisons with the state-of-the-art 

methods in practical applications, the proposed method demonstrates its successful monitoring 

capability. 

However, it is important to note that the proposed model has only been verified using DC 

charging piles in one region. The effectiveness of model in monitoring the measurement 

performance of AC charging piles and charging piles under different environmental conditions 

remains unknown. Moreover, this study primarily focuses on a typical charging station 

topology structure. Further research is needed to explore other types of topological structures 

and increase model versatility. 
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