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Abstract 

The paper introduces and assesses the Eigenvalue Covariance Intersection (EVCI) algorithm for data fusion  

in Wireless Sensor Networks. The EVCI aims to enhance information fusion efficiency, reduce transmitted data, 

and potentially extend network lifespan. By conducting the eigendecomposition of covariance matrices,  

EVCI evaluates the utility of eigenvectors and strategically employs only those positively impacting estimate 

accuracy. Through simulations and comparisons with the Covariance Intersection (CI) algorithm, the study 

demonstrates EVCI's ability to maintain accuracy alongside with significant energy savings. The paper provides 

insights into popular data fusion algorithms, the concept of the EVCI, used formulas, and selected simulation 

results. 
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1. Introduction 

Wireless Sensor Networks (WSNs) became very popular in various branches of industry, 

science, business, and everyday life. They can be utilized in numerous applications, such as 

environmental monitoring, object tracking, health monitoring or surveillance [1-5]. The main 

benefit of using these solutions is the ability to use small, low-cost sensing nodes that can cover 

a large area and perform tasks that a single, sophisticated device would not be able to conduct, 

or its use would be expensive and inefficient [6-7]. 

A massive increase in the availability of devices with low-power consumption, relatively 

high computational capabilities, and long lifespan can be observed on the market [3, 5-6]. They 

can measure various parameters, with the most commonly monitored being range, temperature, 

pressure, humidity, and acidity [1-5, 8]. 

The indicated features, combined with the ability to exchange data among such sensors and 

possible scalability, have made WSNs widely used in military applications and in the industrial 

sector [9-10]. Solutions based on WSNs, utilizing both homogeneous and heterogeneous 

sensors, have been successfully implemented in both outdoor and indoor applications [11]. 

Despite the popularity and widespread use of WSNs today, their further development 

requires solving issues related to, among others, a large amount of processed data, a massive 

number of devices and communication between them. Furthermore, the problems of effortlessly 

deploying sensors and, if necessary, expanding the network must be addressed. Solutions  

to these challenges can be sought in the development of the hardware layer or in the algorithms 

that are responsible for the operation of the network and analysing information [7, 12]. 

Especially important challenges that need to be addressed are the need to effectively fuse 

data from multiple devices and ensuring the most accurate outcome [12-13]. It is demanding 
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task in both centralized and decentralized approach. The problem is to find a solution that would 

not require the exchange of a large amount of data and, consequently, high bandwidth 

consumption. At the same time, it should ensure high accuracy of the final result. These are 

needed to make good use of the benefits of the idea of sensor networks and thus gain an 

advantage over other systems [13]. The problem of finding the optimal solution varies 

depending on the purpose of the WSN and requires a compromise between limiting the data 

being transmitted and performance of the system [3, 5]. 

Each WSN has its constraints resulting mainly from hardware limitations which are caused 

by small sizes of devices and their low cost. Most sensors are battery powered and have limited 

energy resources [6, 13-14]. Therefore, all actions related to the performance of their intended 

tasks must be energy efficient. It is known that the energy used to emit signals is a heavy load 

for the sensors and this activity requires more resources than the processing of the received 

data, and the calculations made on their basis [5, 14]. All redundant processes and operations 

reduce WSN lifespan, and this is the reason why so much attention should be paid to optimize, 

both in terms of hardware and software, the power consumption of individual nodes  

[3, 5, 8, 15-18]. Energy savings can be achieved through various means, such as reducing the 

frequency of data transmission during periods of low dynamic changes in observed quantities 

or when the node's battery is nearing depletion, thereby enabling an energy-saving mode [3]. 

In this paper, we address challenges mentioned above and introduce novel data fusion 

technique which is based on the Covariance Intersection (CI) algorithm [19]. In order to limit 

the amount of transferred data and, in consequence, to make the network more efficient in terms 

of energy consumption, data selection is performed by each sensor before transmission.  

It is based on eigendecomposition of the covariance matrix and the assessment of the usefulness 

of the data. It is conducted by analysing the obtained eigenvalues. In this way, it is possible  

to significantly reduce transmitted data by omitting values that do not contribute positively  

to the final result. The proposed selection methodology ensures that the limitation of the shared 

data does not affect the accuracy of the outcome. 

This paper is organized as follows. The problem formulation is described in Section 2.  

A review of common data fusion techniques is presented in Section 3. In Section 4, proposed 

Eigenvalue Covariance Intersection (EVCI) algorithm is described in detail. Selected results of 

the simulation experiments are included in Section 5 and Section 6 contains concluding 

remarks. 

2. Problem formulation 

In the following sections, we address the problem of fusing data from sensors within a WSN. 

The considered network comprises 𝑛 interconnected devices, collaborating to exchange 

information and process data for generating a unified output. 

Each sensor node determines the state of the observed object, which is characterized by two 

distinct equations: a dynamics model and an observation model [20-21]. Mathematically,  

in a discrete-time domain they are expressed as follows [20]: 

 𝐱𝑖(𝑘 + 1) = 𝚽𝑖(𝑘 + 1, 𝑘)𝐱𝑖(𝑘) + 𝐰𝑖(𝑘) (1) 

 𝐳𝑖(𝑘) = 𝐡𝑖[𝐱𝑖(𝑘), 𝑘] + 𝐯𝑖(𝑘) (2) 

where: 𝐱 – state vector, 𝚽 – transition matrix, 𝐰 – vector of random process disturbances,  

𝐳(𝑘) – vector of acquired measurements at time 𝑘, 𝐡 – a non-linear observation function  

and 𝐯𝑖 – measurement noise [20]. All of the presented quantities refer to the 𝑖-th sensor in the 

considered network. 
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Each node, as a result of individual measurements and estimations often facilitated by 

algorithms such as the Kalman filter, possesses information in the form of a state vector, and 

an associated covariance matrix. 

The data fusion process typically involves a linear combination of all the data from each 

sensor to calculate a global state vector 𝐱. For 𝑛 nodes the following formula is used [19]: 

 𝐱 = 𝐖1�̂�1 + 𝐖2�̂�2 + ⋯ + 𝐖𝑛�̂�𝑛 = ∑ 𝐖𝑖�̂�𝑖
𝑛
𝑖=1  (3) 

and a corresponding global covariance matrix 𝐏: 

 𝐏 = ∑ ∑ 𝐖𝑖𝐏𝑖𝑗𝐖𝑗
T𝑛

𝑗=1
𝑛
𝑖=1  (4) 

where 𝐖𝑖 denotes the proper fusion gain and 𝐏𝑖𝑗 is a cross-correlation matrix or covariance 

matrix when 𝑖 = 𝑗. 

This conventional approach often overlooks the significance of cross-correlation between 

variables, making its use less justified in many cases. It is crucial to take into account the fact 

that usually the value of the cross-correlation is unknown and considering it ensures that the 

fused data is not only representative but also unbiased, thereby providing reliable insights into 

the state of the observed quantity [19]. 

Our goal in this research was to devise a novel algorithm that builds upon existing data fusion 

methodologies, addressing the challenge of handling unknown cross-correlations. 

Simultaneously, we aimed to meet the specific demands of Wireless Sensor Networks, where 

data transmission efficiency is crucial. The proposed algorithm achieves a reduction in data 

transmitted by the sensors while upholding the accuracy of estimated results. 

3. Data fusion techniques 

In the following section, examples of typical existing data fusion algorithms are briefly 

described. To improve clarity and to make the distinctive characteristics of each method readily 

visible, this section of the article focuses on presenting the relevant dependencies with reference 

to two data sources. In the presented considerations, the authors refer to the local state vector 

estimates of two sensors �̂�1 and �̂�2 and their corresponding covariance matrices 𝐏1 and 𝐏2. 

In order to fuse two random variables when the value of the cross-correlation between them 

is known, using a linear combination of the means, and then determining the value  

of the covariance is the optimal solution [19]. Although, in the case of lack of knowledge about 

cross-correlation such an algorithm will not provide consistent result. This is the reason why 

the most common data fusion technique, from which many other algorithms were derived,  

is the Covariance Intersection [19]. The main motivation for the development of the CI was  

to provide a solution which yields consistent result regardless of the correlation value. 

It is based on the convex combination of the means and covariances in the information space. 

The idea behind the CI algorithm is to use intersection of the covariance matrices of the 

individual sensor measurements, which represent the uncertainty of the measurement from  

a particular source [19]. 

 𝐏−1 = 𝜔𝐏1
−1 + (1 − 𝜔)𝐏2

−1 (5) 

 𝐏−1�̂� = 𝜔𝐏1
−1�̂�1 + (1 − 𝜔)𝐏2

−1�̂�2 (6) 

According to the CI algorithm 𝐏 matrix lies within the intersection of the covariance matrices 

of the fused data. That is why, consistent result of the fusion is always provided, and the value 

of cross-correlation influences only the amount of the information that can be used. 

Nevertheless, even without any knowledge about 𝐏12, at least a conservative estimate can be 

obtained [19]. 
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Other popular data fusion techniques are usually modifications of the Covariance 

Intersection algorithm. Since, it has some flaws in certain scenarios, some improvements which 

would eliminate them were developed. 

In [22] fast non-iterative algorithm called the Fast Covariance Intersection was proposed.  

Its main assumption is an attempt to reduce numerical effort of finding weighting coefficients, 

since obtaining proper values of them for optimal, in MMSE sense, fusion result requires 

iterative minimization of the traces (or determinants) of covariance matrices. 

In [24] another approach to combine probability density functions (PDFs), which represent 

estimates of certain quantity, called ellipse intersection (EI) was proposed. The main reason for 

the search for a new method was a desire to find a tighter covariance than that achieved by the 

previous methods. It uses ellipsoids to show the possible values for each estimate, and then it 

finds a common ellipsoid that includes the best possible combined estimate while considering 

the different information and uncertainties from each source. While CI algorithm assumes that 

the true estimate lies within the intersection of the individual ellipsoids, EI considers both 

shared information and compromise mean to create a new ellipsoid that balances the estimates’ 

information. In terms of visualisation, CI’s result is the intersection of the original ellipsoids, 

while EI’s result is a new ellipsoid that considers both estimates’ information [24-25]. 

Thorough analysis of the above algorithms showed that the results obtained with the CI are 

too conservative and may contribute to less accurate estimates. As for the EI, which provides 

more tight results, there is a risk that the consistency will not be achieved in some cases. Based 

on these observations, a new algorithm called the Inverse Covariance Intersection (ICI) was 

proposed in [26-27]. It provides a new ellipsoid that wraps around tightly the overlapping region 

of the original ones, and it does that by considering the ellipsoids of the inverse covariance 

matrices. 

4. Eigenvalue Covariance Intersection data fusion algorithm 

The algorithms discussed earlier provide means to derive estimations for monitored 

quantities within a sensor network, contributing to varying degrees of accuracy. However, most 

of these algorithms, with the exception of the Fast Covariance Intersection, do not directly 

tackle the challenge of prolonging device lifespans by limiting specific resource-intensive 

operations. Notably, the Fast Covariance Intersection algorithm introduces a non-iterative 

weight determination method, offering a modest reduction in computational operations. This, 

in turn, translates to a reduction in the energy consumption during the data fusion process. 

Building upon the insights discussed earlier, where the energy-intensive nature of signal 

emissions for data transfer between sensors was highlighted, a strategy that mitigates the need 

for extensive data exchange among devices was sought to be devised. This approach was 

designed to achieve a twofold objective: to reduce the energy burden associated with data 

transmission and, simultaneously, to uphold the accuracy of estimation results. 

The core motivation driving the development of the EVCI algorithm revolves around 

optimizing data exchange between sensors. Recognizing that vital information about  

the observed parameter's state resides within the local state vector of each sensor and its 

corresponding covariance matrix, the traditional approach involves interchanging these 

quantities among sensors. They are obtained using local estimation algorithms in the form of, 

for example, the Kalman filter or its modifications. Interchange of mentioned information lays 

the groundwork for achieving possibly uniform state estimates across the sensor network, 

enabling a comprehensive understanding of the observed variables. 

The unique aspect of the proposed algorithm is its distinctive data selection strategy. Rather 

than exchanging all available data, the algorithm evaluates the relevance of data before 

transmission. By doing so, it eliminates the burden of unnecessary data transfer, streamlining 
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the communication process and significantly reducing the energy expenditure associated with 

data exchange. In consequence, the efficiency and sustainability of the sensor network  

is elevated by optimizing energy consumption. 

It is worth to point out that employing local state estimation through Kalman filtering results 

in the loss of higher statistical moments, considering only the mean and covariance of the 

observed variables. In this context, the proposed EVCI algorithm does not compromise the 

transmission of this information to other nodes. However, if other local estimation algorithms 

like particle filters (PF) were used in the nodes, data fusion using the EVCI algorithm would 

restrict the retention of this information. In situations where preserving this data is essential, it's 

advisable to refrain from using the proposed data fusion algorithm. Nevertheless, while these 

statistics may offer additional insights into the data distribution, many sensor network 

applications prioritize accurate estimation of state variables with minimal computational and 

communication resources. 

Another issue associated with using Kalman filtering is the requirement to assume  

a Gaussian distribution for the observed values, which serves as the foundation for this category 

of filtering algorithms. When heavy-tailed distributions are encountered, extreme values  

and outliers are present, the use of Kalman filtering may not be appropriate. Consequently,  

the EVCI algorithm would not be applicable, as it would result in the loss of higher-order 

moments. Nonetheless, in many sensor network scenarios a multivariate Gaussian distribution 

is present, making it a suitable foundation for the algorithm's development. This holds true for 

various applications such as radar localization networks, position estimation in unmanned aerial 

vehicle swarms, as well as distributed acoustic sensing and soil monitoring networks [8]. 

4.1. Data reduction method 

The data reduction method is presented within the context of two cooperating devices 

marked as 𝑁1 and 𝑁2, both observing the same quantity. Following the estimation of their 

respective states via the local Kalman filters, these modules initiate the exchange of crucial data 

with their neighbouring counterparts (in this scenario, with each other). At the heart of this 

method lies the eigendecomposition of the covariance matrix, yielding eigenvectors and 

corresponding eigenvalues: 

 𝐏1 = 𝐔1𝚲1𝐔1
T = ∑ 𝐮1𝑘𝜆1𝑘𝐮1𝑘

T𝑛
𝑘=1  (7) 

The matrix 𝐔1 contains 𝑛 columns with eigenvectors 𝐮1𝑘, while the diagonal matrix 𝚲1 holds 

the eigenvalues 𝜆1𝑘. The pivotal criterion employed for selecting the data to be shared among 

nodes centers on the evaluation of individual eigenvalues. This process of eigenvalue 

assessment empowers the algorithm to make informed decisions about data transmission, 

ensuring that only the most relevant information is exchanged between nodes. 

The eigenvalues are systematically organized in a non-increasing order. Within this sorted 

list, they are then divided into two distinct groups: 

− The first group encompasses eigenvalues 𝜆1𝑘, where 𝑘 ranges from 1 to 𝑚, and these 

eigenvalues satisfy the condition 𝜆1𝑘≥ 𝜆𝑡. Here, 𝜆𝑡 represents a defined threshold value. 

− The second group comprises eigenvalues characterized by 𝜆1𝑘< 𝜆𝑡. 

In parallel with this eigenvalue categorization, the corresponding column eigenvectors 𝐮1𝑘, 

are also sorted in an identical order. Building upon the preceding division into two distinctive 

subgroups, we can express the covariance matrix 𝐏1 as the summation of decomposition 

outcomes associated with both the larger and smaller eigenvalues: 

 𝐏1 = 𝐏1𝑟 + 𝐏1𝑎 = 𝐔1𝑟𝚲1𝑟𝐔1𝑟
T + 𝐔1𝑎𝚲1𝑎𝐔1𝑎

T  (8) 
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Significant eigenvalues, denoting heightened uncertainty in the specific distribution of the 

random variable, are omitted from transmission to neighbouring nodes. These high-value 

components offer marginal enhancements to the fusion accuracy. Consequently, in the 

relationship (20), this subgroup is designated with the index 𝑟 signifying rejected elements in 

the data selection process. Meanwhile, the remaining part, signifying the accepted data,  

is denoted with the letter 𝑎. Therefore, only the second part of the above sum is transmitted.  

It can be presented in the following form: 

 𝐏1𝑎 = 𝐔1𝑎𝚲1𝑎𝐔1𝑎
T = 𝐔1𝑎√𝚲1𝑎√𝚲1𝑎𝐔1𝑎

T = (𝐔1𝑎√𝚲1𝑎)(𝐔1𝑎√𝚲1𝑎)
T
 (9) 

A state vector and a selected, properly prepared part of the covariance matrix are sent. Thus,  

a dataset {𝐱1, 𝐔1𝑎√𝚲1𝑎} is transferred. Considering that the state vector 𝐱1 comprises 𝑛 

elements, the matrix 𝐔1𝑎√𝚲1𝑎 possess 𝑛 rows and 𝑛 − 𝑚 columns, resulting in a total 

transmission of 𝑛 + 𝑛(𝑛 − 𝑚) numbers. 

Neighbouring node 𝑁2 receives the data {𝐱1, 𝐔1𝑎√𝚲1𝑎}. To process this information,  

it initiates a series of steps. First, the received matrix 𝐔1𝑎√𝚲1𝑎 undergoes Singular Value 

Decomposition (SVD) as follows: 

 [𝐔1𝑛𝑢𝑙𝑙, 𝐒, 𝐕] = 𝑠𝑣𝑑(𝐔1𝑎√𝚲1𝑎) (10) 

This decomposition, represented as 𝐔1𝑎√𝚲1𝑎 = 𝐔1𝑛𝑢𝑙𝑙𝐒𝐕T, allows to extract the columns of 

matrix 𝐕 that correspond to zero singular values in 𝐒. These columns collectively form an 

orthonormal basis of vectors known as 𝐔1𝑛𝑢𝑙𝑙, which characterizes the zero subspace of the 

𝐔1𝑎√𝚲1𝑎 matrix, essentially representing the kernel of this transformation. 

Subsequently, the 𝑁2 node that received the data reconstructs the matrix 𝐏1 using two 

components: 𝐏1𝑛𝑢𝑙𝑙, which replaces the missing data from the matrix 𝐏1𝑟, and 𝐏1𝑎.  

The reconstructed matrix is denoted by �̃�1 and the process is defined by: 

 �̃�1 = 𝐏1𝑛𝑢𝑙𝑙 + 𝐏1𝑎 = 𝐔1𝑛𝑢𝑙𝑙𝚲1𝑛𝑢𝑙𝑙𝐔1𝑛𝑢𝑙𝑙
T + (𝐔1𝑎√𝚲1𝑎)(𝐔1𝑎√𝚲1𝑎)

T
 (11) 

Here, the 𝚲1𝑛𝑢𝑙𝑙 matrix is diagonal and contains very large values, selected arbitrarily to 

represent a high level of uncertainty. In theory, these values should be infinitely large, but in 

practice, large finite numbers are assumed. 

Finally, the module performs data fusion using the reconstructed matrix and his local 

covariance matrix, as well as the received data vector 𝐱1 and 𝐱2. The fusion equations are given 

by: 

 �̂�2 = (�̃�1
−1 + 𝐏2

−1)
−1

 (12) 

 �̂�2 = �̂�2(�̃�1
−1𝐱1 + 𝐏2

−1𝐱2) (13) 

These operations enable to effectively combine data from another node and its own data to 

generate an improved estimate of the monitored quantity. 

Figure 1 visually illustrates the algorithm's concept using error ellipses, which graphically 

represent covariance matrices. This visualization demonstrates how the algorithm achieves 

consistent results by rejecting high-uncertainty components and replacing them with infinite 

values. As can be seen, despite reducing information, the fused data (red ellipsoid) remains 

consistent and similar to the conventional data fusion result, emphasizing the algorithm's 

capacity to enhance network efficiency without compromising data accuracy. 
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a) b) 

Fig. 1. Comparison of the basic CI algorithm (a) and the EVCI data fusion algorithm (b). 

The algorithm's functionality is depicted using a pseudocode below. It illustrates the 

operations involved in the EVCI algorithm and the information exchange between two sensors. 

Demonstrating a single iteration of the data fusion process, it begins with data filtration in the 

𝑁1, followed by data selection, transmission, reception in the 𝑁2, data reconstruction, and 

ultimately, data fusion to attain a global state estimate. Figure 2 presents the key operations in 

individual nodes described in the article. The remaining pseudocode, which is analogous to the 

one already presented for the other node, has been replaced with dots. 

 

Fig. 2. Pseudocode of the EVCI algorithm depicting the data exchange process between two nodes, culminating 

in data fusion to obtain a global state estimate at node 2. 
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5. Simulation results 

To assess the effectiveness of the proposed data fusion algorithm, a series of simulative 

experiments were conducted. The simulations serve the dual purpose of demonstrating  

the utility of the algorithm in data fusion and comparing it with a fundamental method used for 

the same purpose, the CI algorithm. This chapter comprises two primary sections. The first 

section delves into the fundamental properties of the EVCI algorithm under various simulation 

conditions, while the second section highlights the advantages of employing EVCI  

and the resulting benefits in terms of data transmission efficiency. 

5.1. EVCI algorithm evaluation and comparison with the CI 

Our approach to algorithm evaluation mirrors the methodology commonly employed for 

assessing algorithms of a similar class. A simplified scenario featuring a pair of collaborating 

sensors, both focused on observing a single object, was assumed. These sensors perform 

measurements, engage local estimation algorithms, and conduct internal calculations to deliver 

values characterizing the observed object. The next phase involves sharing these datasets, 

which leads to the calculation of an overall estimate for the object's state through the fusion 

process. 

For the purpose of this study, we concentrate on sensors that measure distances to track  

an object's movement. With measurements from a single sensor, the object's three-dimensional 

position remains indeterminable. However, for the sake of simulation, we presume that within 

a broader network – whose structure and properties we abstract from in this analysis – both 

sensors possess knowledge regarding the object's coordinates. Each sensor maintains its own 

state vector and covariance matrix, representing its unique perspective on the object's state. 

The sensors used in this investigation are Ultra-Wideband (UWB) modules, characterized 

by high-precision distance measurements. It can be assumed that the typical measurement 

accuracy of commercially available solutions is approximately 2.5 cm [28]. Nonetheless, as 

part of the simulation, we mimic scenarios where various factors contribute to an escalation of 

errors. Such factors include disturbances in electromagnetic wave propagation or shifts in 

network geometry as the object's position relative to the sensors changes. These unpredictable 

situations generate datasets with random errors, some close to the nominal device accuracy, and 

others exceeding this threshold due to the aforementioned operational obstacles. It's worth to 

mention that in real-world applications, sensor failures can occur. Reducing the transmitted data 

from a malfunctioning sensor can conserve energy and maintain overall system integrity. This 

is a key advantage of the EVCI algorithm: it allows for the selective reduction of data, 

minimizing the impact of erroneous information on the fusion outcome. While a broken sensor's 

inaccuracies may have less influence on the overall accuracy due to the knowledge about the 

covariance matrix, it remains prudent to avoid unnecessary data transmission in such scenarios. 

The local data from the sensors undergo data fusion through both the CI and EVCI 

algorithms. Notably, when using the proposed EVCI algorithm, we introduce varying reduction 

thresholds to investigate their impact on the fusion outcome. Given that our considerations 

maintain equal weights for information originating from both sensors and that they transmit  

the complete state vector and covariance matrix, the global estimate obtained using  

the CI algorithm is identical for both sensors. However, the fusion outcomes yielded  

by the EVCI algorithm manifest a more personalized nature. This distinction arises because 

different datasets may be transmitted to each sensor. For example, one sensor might relay  

the full covariance matrix, while the other may transmit a subset of the reduced eigenvectors.  

As a result, the fusion results may exhibit slight differences between the sensors, and, for this 
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reason, we present the fusion results from both sensors for a comprehensive evaluation of their 

performance. 

In the subsequent simulations, the process was initiated by defining true values that describe 

the observed object. It was assumed that the position of the object of interest is tracked, 

therefore the state vector 𝐱 and the covariance matrix 𝐏 of filtration errors have the following 

forms: 

 𝐱 = [𝑥 𝑦 𝑧]T (14) 

 𝐏 = 𝑑𝑖𝑎𝑔[𝑃𝑥 𝑃𝑦 𝑃𝑧]T (15) 

Subsequently, a dataset consisting of 𝑘 samples, reflecting the local estimations from both 

sensors, was generated. These local estimations encompassed state vectors with predefined 

error values characteristic of UWB sensors. In parallel, the associated filtration error covariance 

matrices were generated. 

Conducted simulations aimed to serve as a benchmark for the EVCI algorithm. The 

generated dataset was intentionally tailored to mimic the aforementioned real-world scenarios, 

which included substantial measurement uncertainties. 

Figure 3 provides a comprehensive overview of the results, showcasing the RMSE  

(Root Mean Square Error) values. We explored two different reduction thresholds, in order to 

study distinctions in the outcomes and efficiency of the EVCI to adapt to diverse situations. 

a)

 

b)

 

Fig. 3. RMSE values comparison of the CI and EVCI algorithm for the smaller eigenvalue reduction threshold 

(a) and for the bigger eigenvalue reduction threshold (b). 

RMSE value for the 𝑘-th sample is calculated as follows [29]: 

 𝑅𝑀𝑆𝐸𝑎(𝑘) = √
1

𝑛
(�̂�𝑎(𝑘) − 𝐱(𝑘))T(�̂�𝑎(𝑘) − 𝐱(𝑘)) (16) 

Symbol 𝑎 indicates the algorithm used for calculations (CI/EVCI) and �̂�𝑎 denotes the state 

vector estimated with the 𝑎 algorithm. The 𝑛 quantity is the number of the state vector elements. 

The results obtained using EVCI closely match those from CI, even when adjusting the 

reduction threshold. This suggests that the choice of threshold had a limited impact on RMSE 

in the tested scenario. 

These findings are reinforced by the 𝑍-component position curves (Fig. 4), which show 

minor deviations between utilized algorithms. The results at both reduction thresholds exhibit 

slight differences, but these deviations do not significantly affect the overall understanding of 

the observed object. 
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a)

 

b)

 
  

Fig. 4. The 𝑧 values comparison of the CI and EVCI algorithm for the smaller eigenvalue reduction  

threshold (a) and for the bigger eigenvalue reduction threshold (b). 

In the Fig. 5 the estimated values of the 𝑍-component were presented in a form of a graphical 

representation of the results distribution. It includes statistical information about the dataset's 

central tendency and spread. 

a)

 

b)

 
  

Fig. 5. Distribution of the 𝑍-component obtained with the CI and the EVCI algorithms for the smaller eigenvalue 

reduction threshold (a) and for the bigger eigenvalue reduction threshold (b). 

The boxes in the above figures represent the interquartile range (IQR), which is the range 

between the 25th percentile and the 75th percentile of the data. It shows the middle 50% of the 

data. Red line inside each box represents the median, which is the 50th percentile of the data. 

The whiskers extend from the edges of the box to the minimum and maximum values within  

a range, which is defined as 1.5 times the IQR. Red crosses beyond the whiskers are data points 

which are considered outliers. 

Figure 5 reveals that the coordinate values obtained by both algorithms share similar 

distributions. They illustrate that the range of errors, as well as their median values, align closely 

between the two algorithms, regardless of the specific sensor or the chosen reduction threshold. 

Figure 6 provides a comprehensive view of the three-dimensional object position estimation 

results. When using a higher reduction threshold, the outcomes closely resemble those  

of the CI method. With a smaller threshold, although they differ slightly, the errors' distribution 

and range remain within reasonable limits compared to CI. 
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a)

 

b)

 
  

Fig. 6. Position in three dimensions of the observed object obtained with the CI and the EVCI algorithms  

for the smaller eigenvalue reduction threshold (a) and for the bigger eigenvalue reduction threshold (b). 

5.2. Data reduction 

The second part of simulation tests focused on exploring the potential for reducing 

unimportant or less critical data with regard to estimation accuracy. Similar simulations to those 

in the previous section were carried out and the results were examined. In one of these 

simulation scenarios, the number of observed parameters describing the tracked object  

was increased to nine. This expansion could include additional variables such as velocity  

and acceleration or it can be assumed that multiple objects are tracked, though the specific 

application context was not a primary concern in our research. The purpose of this operation 

was to illustrate that as the state vector grows, the number of error-prone parameters may also 

increase. This, in turn, highlights the potential for achieving data transmission savings. 

Figures 7 and 8 provide a summary of our results, focusing on data from a single sensor  

(in this case, sensor no. 1). The first column illustrates RMSE errors, following the same 

calculation approach as described earlier. Tracking these values allows to observe changes and 

the growth of estimation errors as data reduction is applied. In the middle column, the number 

of reduced eigenvectors is shown, indicating the data eliminated prior to transmission. The third 

column outlines the volume of data transmitted using both CI and EVCI algorithms. Subsequent 

rows in the figures present results for various data reduction threshold values. 

The amount of data transmitted by the sensor was estimated under the assumption that each 

element in the state vector and the covariance matrix is stored in a device memory  

as a double-precision floating-point variable (double), typically occupying 8 bytes.  

The following calculations were performed: 

 𝐷𝐶𝐼 = 𝑘(𝑛 + 𝑛2) ∙ 8 B (17) 

 𝐷𝐸𝑉𝐶𝐼 = ∑ (𝑛 + 𝑛(𝑛 − 𝑚𝑖))𝑘
𝑖=1 ∙ 8 B (18) 

where 𝐷 – all the transmitted data, 𝑛 – the number of observed quantities (number of state 

vector elements) and 𝑚𝑖 – the number of reduced eigenvectors in the 𝑖-th simulation step. 
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Fig. 7. Comparison of the CI and EVCI algorithms for a three-element state vector with varying eigenvalue 

reduction thresholds, depicting RMSE values and an amount of the data reduction. 

 
Fig. 8. Comparison of the CI and EVCI algorithms for a nine-element state vector with varying eigenvalue 

reduction thresholds, depicting RMSE values and an amount of the data reduction. 
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As can be seen in the graphs presenting the amount of data transmitted by the sensor,  

in some scenarios (such as in Fig. 8), where individual elements of the state vector have high 

uncertainties, a substantial reduction in transmitted data is achievable. Crucially, it does not 

significantly deteriorate the accuracy of the global estimate, obtained as a result of the fusion. 

This can be observed on the basis of the presented RMSE error curves, which do not differ from 

each other, despite different reduction levels arising from distinct threshold values. 

The results clearly demonstrate that a 50% reduction in data transmission, as compared  

to the traditional CI algorithm, can be accomplished without compromising estimation 

accuracy. Furthermore, it's noteworthy that the greater the number of quantities in the state 

vector, the more significant the potential for achieving data savings. In extensive sensor 

networks, the likelihood of inaccurate estimates of observed values is heightened, requiring 

greater resources to uphold network integrity and precision. This elevated risk of sensor 

malfunction and measurement inaccuracies underscores the criticality of reducing transmitted 

data. Moreover, in networks exposed to area interference or intentional jamming, the volume 

of inaccurate information may escalate considerably. As sensor networks scale up, it is expected 

that the proportional increase in data reduction will lead to a potentially more advantageous 

ratio of reduced data to the number of sensors, indicating improved efficiency with larger 

network sizes. 

6. Conclusion 

This paper has addressed the issue of data fusion in wireless sensor networks. After exploring 

existing methods, the authors proposed their solution called the Eigenvalue Covariance 

Intersection (EVCI), rooted in the Covariance Intersection. The motivation behind this 

algorithm was an attempt to minimize data transmission among devices to optimize energy 

consumption in networks while maintaining the accuracy of the global estimate of observed 

parameters. 

The authors introduced the method for extracting values from the transmitted dataset that 

would not significantly contribute to the final estimate due to their substantial error. This data 

selection relies on the eigendecomposition of the local covariance matrix of filtration errors. 

Analyzing eigenvalues enables the rejection of those exceeding an assumed threshold and 

corresponding eigenvectors. The proposed solution also outlines a method for recovering  

the covariance matrix in receiving sensors, enabling effective data fusion. 

Simulation studies and the comparative analysis between the EVCI and the CI algorithm 

showcase the potential to significantly reduce data while preserving accuracy. In certain cases, 

the authors demonstrated nearly a twofold reduction in transmitted data. The results suggest 

that in specific applications, particularly in wide networks monitoring numerous parameters, 

substantial energy savings can be achieved with a similar level of errors in the final estimate. 

In future works, in-depth simulation research and testing of the algorithm in specific 

application scenarios are planned. Current authors’ efforts focus on implementing the EVCI 

algorithm in a swarm of unmanned aerial vehicles (UAVs), a unique form of sensor network. 

In such networks, each UAV shares its navigation data with others to provide them with 

situational awareness and develop a global state estimate. What is more, it is crucial to minimize 

energy consumption to extend the lifespan of the nodes. Furthermore, the authors aim to explore 

the optimal reduction threshold selection, considering both the degree of reduction and result 

accuracy. 
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