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Abstract 

Obtaining the characteristics at a characteristic point of the outputs is a key step to the geomagnetic attitude 

measurement method of the spinning projectile. However, the actual outputs usually have some noise that cause 

the characteristic points to deviate from the theoretical position or produce multiple fake characteristic points, 

resulting in the increase of solution error and even the failure of solution. In addition, the coning motion and 

inaccurate initial alignment of the spinning projectile increase the number of unknown parameters and the 

computational complexity. In this study, several improved particle swarm optimization strategies are proposed. 

The actual outputs are fitted to the geomagnetic output equations under the coning motion, and the supervised 

learning effect of each strategy is analyzed and compared. The algorithm can be flexibly adjusted according to 

different needs in actual use by selecting appropriate strategies, which has wide applicability in data fitting. 

Keywords: improved particle swarm optimization, geomagnetic attitude measurement, coarse initial parameter, 

weak boundary condition. 

1. Introduction 

Due to its high-speed rotation, the spinning projectile has high stability during flight and has 

become a widely used conventional weapon. In order to improve the hit accuracy of the 

spinning projectile fired by conventional artillery, many researchers have carried out researches 

on its attitude measurement method. With the development of MEMS magnetic sensors, the 

geomagnetic attitude measurement method has the advantages of miniaturization, low cost and 

low power consumption on the basis of meeting the requirements of all-time and all-weather 

autonomous attitude measurement, and has become one of the rapidly developed attitude 

measurement methods in recent years. However, the three output equations of the tri-orthogonal 

magnetic sensor are not independent of each other, it is unable to solve the full attitude angles. 

It can only be used as an auxiliary method to integrate with other attitude measurement methods 

such as inertial attitude measurement, infrared attitude measurement and so on [1-2]. In order 

to overcome this problem, some scientific researchers design algorithms which can 

independently solve the full attitude angles of the spinning projectile through the characteristics 

of the geomagnetic outputs, such as the zero-crossing method [3], the cross-ratio method [4], 

the integral ratio method [5], and the derivative ratio method [6]. However, most of these 

algorithms are based on the ideal state that the noise is very low. In this case, key parameters 

such as frequency and amplitude can be easily obtained according to the statistical regularity of 

noise and simple data processing such as FFT. Moreover, in most of these algorithms, the 

forward direction of the spinning projectile is regarded as always consistent with the tangent 
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direction of the trajectory, and the coning motion of the spinning projectile due to the Magnus 

effect is ignored [7-9]. As a result, it is difficult to estimate the coning motion frequency and 

taper angle of the spinning projectile by traditional data processing methods. In addition, in 

practical applications, sometimes the initial state of the spinning projectile can only be obtained 

through rough alignment, so it is more difficult to estimate the geomagnetic output parameters. 

Therefore, it is necessary to propose a method that can accurately obtain the initial attitude 

angles, taper angle, spinning speed and coning motion frequency of the spinning projectile at 

the same time, so as to provide signal characteristics for the geomagnetic measurement method 

of the spinning projectile. 

In view of the key parameters of the geomagnetic field and the motion characteristics of the 

spinning projectile, Li et al. established the attitude measurement model of the three-axis 

magnetic sensor of the spinning projectile [10]. On this basis, He et al. established the 

geomagnetic measurement model of spinning projectile under coning motion [6], providing a 

standard for calibrating geomagnetic characteristic parameters through data fitting. The actual 

output signals will inevitably be mixed with a certain degree of noise, which will affect the 

result of data fitting. In the calibration of magnetic sensors, Yu et al. calibrated AC vector 

magnetometer by ellipse fitting method [11]. Li et al. designed a least squares regression 

algorithm that can realize online calibration [12]. Sun et al. studied the error compensation 

method of ellipse fitting calibration magnetometer [13]. Li et al. proposed a dual inner product 

method to improve the calibration and alignment of the magnetometer [14]. Farhangian et al. 

fused the data of multiple magnetic sensors through UKF to accurately estimate the calibration 

parameters [15]. Crissidis et al. realized the calibration of magnetometers static errors with 

different dimensions based on the total least squares method [16]. The methods in Ref. [11-16] 

calibrate the magnetic sensor to eliminate static and dynamic errors, enabling the sensors to 

output more accurate signals. However, when solving the attitude angles using tri-orthogonal 

geomagnetic model, the geomagnetic signals will inevitably be coupled with noise. In order to 

eliminate the influence of noise, it is necessary to select appropriate optimization algorithms 

for processing geomagnetic signals.  

Lu applied the gradient descent method to the inertial/geomagnetic navigation system and 

obtained the magnetic distortion parameters [17]. Zhou et al. adopted an improved iterative 

Gauss-Newton method to identify the aerodynamic parameters of high-spinning projectiles 

using GPS and geomagnetic measurement data [18]. Deng et al. introduced backpropagation 

(BP) neural networks to solve the inertial/geomagnetic attitude coupling model, reducing the 

root mean square error of attitude by more than 50% [19]. Cuenca et al. identified and described 

important contributors to the total magnetic field through deep learning and Gaussian regression 

processes to combat interference and noise [20]. Among the above optimization algorithms, the 

gradient descent method has slow convergence speed, poor stability, and is highly sensitive to 

initial conditions. The Gauss-Newton method may generate ill conditioned matrices during the 

solving process, resulting in incorrect results. The BP algorithm and deep learning can achieve 

high-precision results when there is a large amount of data available for learning. However, the 

flight time of conventional spinning projectile is limited. The amount of data is not enough and 

there are many parameters to be estimated. Therefore, a relatively simple algorithm is needed 

to obtain all the required attitude measurement model parameters. 

2. Measurement model of tri-orthogonal magnetic sensor 

The principle of the tri-orthogonal geomagnetic attitude measurement method of the 

spinning projectile is to obtain one of the attitude angles according to some characteristics at a 

certain position of the magnetic outputs. The other two attitude angles are solved by using the 
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tri-orthogonal geomagnetic equations. Ref. [6] provides the tri-orthogonal geomagnetic 

equations, as shown in (1) and (2) 

 

sx0 H 0 0 V 0 0

sy0 H 0 0 0 0 0 V 0 0 0 0 0

sz0 H 0 0 0 0 0 V 0 0 0 0 0

cos cos cos sin

(sin sin cos sin cos ) (sin cos cos sin sin )

(cos sin sin sin cos ) (cos cos sin sin sin )

M M M

M M M

M M M

   

         

         

= −


= − + +
 = + + −

 (1) 

where HM , VM  denote the horizontal and vertical component of the geomagnetic field vector 

norm, sx0M , sy0M , and sz0M  denote the outputs of the magnetic sensor without coning motion, 

and 0 , 0 , and 0  are the magnetic yaw angle, magnetic pitch angle, and roll angle without 

coning motion, respectively. Within the range of conventional artillery, the variation of the 

geomagnetic field vector norm and magnetic declination are quite small, so HM  and VM  can 

be regarded as constants. When the spinning projectile flies in coning motion, the attitude angles 

need to be corrected by (2) 

 

0

0

0

= sin 2π

cos 2π

ft

ft

  

  

 

+


= +
 =
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where  ,  , and   denote the yaw angle, pitch angle, and roll angle with coning motion,   is 

the taper angle, and f  is coning motion frequency, respectively. 

The tri-orthogonal geomagnetic attitude measurement method of spinning projectile 

includes cross ratio method, integral ratio method, derivative ratio method and so on. The 

characteristics of magnetic sensor outputs selected by these methods are different, as shown in 

Table 1. 

Table 1. Characteristics required by tri-orthogonal geomagnetic attitude measurement method. 

Measurement Method Characteristics 

Cross Ratio Method 
Ratio between the Intersections of Outputs of 

y and z Axes and the Output of x Axis 

Integral Ratio Method 
Integration between 0-value Points of 

Outputs of y and z Axes 

Derivative Ratio Method 
Derivative at 0-value Points of Outputs of y 

and z Axes 

 

However, when there is large interference in the output signals, no matter which algorithm 

is used, there will be two problems. The first is that the position of characteristic points will be 

offset due to noise, and the second is that the solution error of characteristics will be generated 

due to noise, as shown in Fig. 1. 
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Fig. 1. Influence of noise on characteristic points with influence of noise on 0-value position (a) or influence of 

noise on intersection position (b). 

In order to reduce the influence of noise on the tri-orthogonal geomagnetic attitude 

measurement method, the actual output signals of the magnetic sensor can be fitted to the 

standard output signals based on the tri-orthogonal geomagnetic equations. In this case, not 

only the position of characteristic points can be obtained quickly and directly by fitting the 

signals, but also the characteristic values can be directly calculated according to the fitted 

parameters, completely omitting the complex signal processing such as denoising and filtering. 

3. Improved particle swarm optimization fitting algorithm 

Particle swarm optimization (PSO) is an optimization algorithm with many advantages, such 

as simple steps, less parameters and fast convergence. In this study, an improved PSO algorithm 

is used to transform the problem of data fitting into a problem of nonlinear function 

optimization, and the results can be obtained simply and quickly through an indirect way. 

Each particle in the PSO algorithm is a D  dimension vector, which is a search individual in 

the optimization space. The particle position in each iteration can be regarded as a candidate 

solution, and the flight process of the particle is the search process. The particle speed can be 

adjusted in real time based on the optimal position of a single particle and all particles in the 

iterative process. A particle has only two attributes: speed and position. Speed represents the 

velocity of particle motion, and position represents the direction of particle optimization. The 

optimal solution in the optimization process of a single particle is the individual extreme value, 

and the optimal solution in the optimization process of all particles is the current global optimal 

solution. In each iteration, the particle speed, position and optimal solution are continuously 

updated, and the optimal solution is obtained when the convergence is finally completed or the 

termination condition is met [21-25]. The steps of PSO algorithm are as follows: 

1) Initialize 

First, set the termination condition. The maximum number of iterations is usually selected 

based on experience. Take initial condition randomly in the speed range and search space, 

and set the number of argument of the objective function, particle speed range  

min max[ , ]V V , position range min max[ , ]x x  and particle number N . 
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2) Individual extremum and global optimal solution 

Define the fitness function and the selection principle of the optimal solution. The global 

optimal solution obtained in each iteration needs to be updated after comparing with the 

historical global optimal solution. 

3) Update speed and position 

Among the N particles in the D dimension space, the position and speed of the ith particle 

are expressed as 1 2[ , , , ]i i i idx x x x=  and 1 2[ , , , ]i i i idV V V V= , respectively. Update the 

speed and position according to (3) and (4) 

 1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))id id id id id idV k V k C r P k x k C r G k x k+ = + − + −
 (3) 

 
( 1) ( ) ( 1)id id idx k x k V k+ = + +

 (4) 

where, 1,2, ,i N= , 1,2, ,d D= ,   is the inertia weight factor, which is usually a 

constant in the conventional PSO algorithm. k  is the current iteration number. 1C  and 2C  

are learning factors, generally 2. 1r  and 2r  are random numbers evenly distributed 

between 0 and 1. ( )idP k  and ( )idG k  are the fitness and global fitness of the ith particle, 

respectively. 

During fitting, the fitness function can be constructed by the least square method, and the 

problem can be converted into the optimization problem of obtaining the minimum value of the 

function, as shown in (5). 

 ( ) ( )
T

s t s tminiM  = − −
  

M M M M  (5) 

where, iM  is the fitness, tM  is the actual outputs of the magnetic sensor, and sM  is the ideal 

outputs of the magnetic sensor. 

Combining (1) and (2), the estimated parameters of the attitude measurement outputs of the 

spinning projectile are initial attitude angles i (0) = , i (0) = , i (0) = , taper angle   

and coning motion frequency f . The initial roll angle is defined manually, and is usually taken 

as 0 for convenience. In addition, replace the roll angle   with a function of time 02 f t = , 

where 0f  is the roll angle frequency. Then there are 5 parameters to be estimated of this 

question, namely 0 ， 0 ， 0f ， ， f . 

In the actual situation, all physical quantities have initial values and constraints. When fitting 

the tri-orthogonal magnetic sensor attitude measurement outputs, the constraint conditions 

should be set according to (6). 
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where h , l  are the upper and lower limit of magnetic yaw angle coarse alignment, h , l  

are the upper and lower limit of magnetic pitch angle coarse alignment. According to the 

stability theory of spinning projectile, the roll angle frequency of spinning projectile is 

proportional to the coning motion frequency, which is related to the length-diameter ratio of 
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projectile, and the proportion is m . As an important structural parameter of the projectile, the 

length-diameter ratio of the projectile is a known quantity. Assuming that the proportion range 

estimated by the projectile length-diameter ratio is lm ~ hm , (6) can be upgraded to (7). 
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 (7) 

In PSO, inertia weight factor ω is a parameter that affects the exploration ability of the 

algorithm. The value is higher, the global search ability is stronger. The value is smaller, the 

local search ability is stronger. Because the strong nonlinearity of the tri-orthogonal magnetic 

sensor outputs, the fitness function constructed by (5) have a lot of local optimal values. This 

raises problems such as spending too long time to search for the optimal value, easy to fall into 

the local optimum, and unable to select the optimal value. In order to give consideration to the 

global and local search ability of the algorithm, the inertia weight factor should be gradually 

reduced during the whole optimization process, so that the iterative process can quickly 

converge to the interval of the optimal solution. 

The adaptive adjustment strategy is used to dynamically adjust the inertia weight of particles, 

which can make the inertia weight of particles take a larger value in the early stage and improve 

the activity of particles. On the contrary, the weight can be reduced in the later stage, so that 

the particles can converge near the elite particles and close to the global optimal solution. For 

convenience, the following strategies can be used to adjust the weights. 

(1) Reduce by the linear function 

(2) Reduce by the concave quadratic function  

(3) Reduce by the convex quadratic function 

(4) Reduce by the tangent function 

(5) Reduce by the arctangent function 

4. Experiment and results 

The experimental equipment in Ref. [6] is used to verify the improved PSO algorithm 

proposed in this study, as shown in Fig. 2.  

 

Fig. 2. Semi-physical experimental device. 
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Adjust the turntable so that it can carry the semi-physical device to make coning motion 

according to the following parameters. 
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According to (1), the outputs of y-axis and z-axis magnetic sensors are affected by more 

parameters to be estimated, and the outputs of y-axis and z-axis are only different in phase. 

Therefore, the output of y-axis is taken as an example, and its actual measured normalized 

output is shown in Fig. 3. 

 

Fig. 3. Actual output curve of y-axis. 

From Fig. 3, it can be found that the information about the size of taper angle and the coning 

motion frequency has almost disappeared in the noise. 

Then the constraints should be set. In other commonly used attitude measurement methods, 

such as inertial attitude measurement, it is necessary to obtain more accurate initial states 

through initial alignment. However, the fitting method proposed in Section 3 of this study does 

not need such accurate initial states. The initial state values can be set in a quite large range, 

even can be directly determined by the naked eye. In addition, assuming 10 0.4m =  , the 

fitting constraints are shown in (9). 
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The commonly used fixed weight and linear weight reduction strategies in PSO algorithm, 

and four improved weight strategies are adopted to solve the fitness function. The maximum 

number of iterations is set to 300, the number of particles is 1000, the fixed weight factor is set 

to 0.2, and the weight of improved methods are reduced from 0.8 to 0.2 according to their 

respective function rules. 
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 (10) 

where k  is the number of iterations. 

Figure 4 shows the weight changes of different improved strategies. 

 

Fig. 4. Schematic diagram of weight change. 

The semi-physical device records the data measured by sensors during the motion process 

and performs fitting calculations offline. The fitting results are shown in Table 2 to Table 7, 

and the solution that do not get the global optimum are marked with "*". After multiple 

iterations in each fitting test, the fitted parameters will converge to a fixed value, and the 

convergence position in the tables is the number of iterations at convergence. To compare the 

fitting effects of different weight optimization strategies, the same dataset is used for fitting. 
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Table 2. Fitting results of fixed weight factor. 

Fitting times ψi(°) θi(°) f0(Hz) δ(°) f(Hz) 
Convergence 

position 

1 29.9703 80.0966 19.9999 5.3176 2.0002 39 

2 29.4504 79.2840 20.0002 4.9184 1.9969 93 

3 29.9278 80.1011 20.0000 5.0534 1.9991 37 

4 29.9008 80.2412 19.9999 5.1431 2.0001 143 

5* 39.2365 82.0403 20.0000 2.1255 2.0682 239 

6* 0 99.5424 19.9958 3.1294 2.0678 35 

7 30.3216 79.8315 20.0001 4.9652 2.0008 47 

8* 45.0000 82.5914 20.0003 4.0088 2.0065 70 

9 29.3786 79.9269 20.0000 5.1204 2.0005 28 

10* 0 99.6112 19.9959 3.7521 2.0678 50 

 

Table 3. Fitting results of linear weight factor. 

Fitting times ψi(°) θi(°) f0(Hz) δ(°) f(Hz) 
Convergence 

position 

1 29.5875 79.9849 19.9999 4.9389 1.9992 243 

2* 0 99.4254 19.9958 3.1856 2.0678 121 

3* 45.0001 82.4429 20.0003 3.7128 2.0090 171 

4 28.6651 79.4177 20.0000 5.0649 1.9981 269 

5 30.1441 80.0197 20.0001 4.9111 2.0000 155 

6 29.1025 79.9667 19.9999 5.0345 1.9991 184 

7 30.1184 79.9681 20.0001 4.7954 2.0012 132 

8 30.1239 79.9584 20.0000 5.0877 2.0022 124 

9 30.5661 80.1467 19.9999 5.0952 2.0020 227 

10 25.6855 78.7299 19.9999 5.1224 2.0018 285 

 

Table 4. Fitting results of concave quadratic weight factor. 

Fitting times ψi(°) θi(°) f0(Hz) δ(°) f(Hz) 
Convergence 

position 

1 30.4185 79.9689 20.0000 4.9205 1.9995 272 

2 29.7814 80.0028 20.0000 4.8883 2.0019 195 

3 29.6732 79.7825 20.0001 5.0264 2.0011 284 

4 30.5923 80.2041 20.0000 5.0006 2.0017 265 

5* 0.0000 99.2765 19.9959 3.2757 2.0678 195 

6 30.5432 79.8731 20.0001 5.0275 2.0025 235 

7 31.5388 80.4662 20.0000 4.8013 2.0039 265 

8* 0.0000 80.0772 19.9959 0.0000 2.0623 290 

9 31.5860 80.1365 20.0002 4.7041 2.0009 231 

10 29.7223 79.9971 19.9999 5.1213 2.0000 243 

 

Table 5. Fitting results of convex quadratic weight factor. 

Fitting times ψi(°) θi(°) f0(Hz) δ(°) f(Hz) 
Convergence 

position 

1* 0.0000 80.0291 19.9959 7.0361 1.9489 291 

2 31.9462 80.4688 20.0000 4.9832 2.0019 211 

3 29.0827 80.0553 19.9999 4.9563 1.9983 110 

4 31.6281 80.1762 20.0001 4.9812 2.0034 153 

5 28.9830 79.5413 20.0000 4.8768 1.9968 141 

6* 0.0000 100.0791 19.9958 3.0577 2.0678 84 

7 30.8577 80.1553 20.0000 4.9351 1.9993 158 

8 29.9823 79.8880 20.0000 5.0567 1.9983 172 

9 29.7722 79.9363 19.9999 5.1987 1.9979 138 

10 30.5448 79.9819 20.0001 4.9716 2.0002 189 
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Table 6. Fitting results of tangent weight factor. 

Fitting times ψi(°) θi(°) f0(Hz) δ(°) f(Hz) 
Convergence 

position 

1 24.4093 81.3644 19.9988 5.0721 2.0403 81 

2 31.3757 80.4418 20.0001 4.8237 2.0003 94 

3* 43.4362 82.5611 20.0001 3.9973 2.0089 83 

4 32.2897 80.9197 19.9999 5.0543 1.9976 98 

5 31.1643 80.2741 20.0000 4.9964 1.9990 106 

6 29.9912 79.6465 20.0002 5.0349 2.0014 130 

7 31.1679 81.1749 19.9996 4.9057 2.0036 93 

8 30.7873 79.8559 20.0002 4.7361 2.0010 87 

9 31.6597 80.3501 20.0001 5.0828 2.0019 93 

10 28.8787 79.7702 19.9999 5.3184 2.0003 120 

 

Table 7. Fitting results of arctangent weight factor. 

Fitting times ψi(°) θi(°) f0(Hz) δ(°) f(Hz) 
Convergence 

position 

1 29.7243 79.8972 20.0001 5.0384 1.9984 198 

2 29.6049 79.7290 20.0001 5.0981 2.0007 220 

3 31.3681 80.2188 20.0002 4.8864 1.9994 177 

4 30.6718 79.9434 20.0001 4.8412 2.0007 179 

5 30.0270 80.0158 19.9999 4.9662 1.9998 223 

6 30.7264 79.8772 20.0001 4.9464 2.0011 179 

7 30.7567 80.0707 20.0001 4.9888 1.9997 189 

8 30.4703 80.0085 20.0000 4.7779 1.9970 185 

9 30.9410 80.4645 19.9999 5.1159 2.0014 187 

10 31.0908 80.4559 19.9999 5.1015 2.0019 214 

 

The differential evolution algorithm exhibits strong robustness in solving non convex, 

multimodal, and nonlinear function optimization problems, especially adept at handling 

multivariate function optimization problems. So, differential evolution algorithm with adaptive 

mutation operator is selected to compare with the proposed improved PSO algorithm. 

Table 8. Fitting results of differential evolution algorithm with adaptive mutation operator. 

Fitting times ψi(°) θi(°) f0(Hz) δ(°) f(Hz) 

1 31.8335 81.3199 19.9994 4.0222 2.0261 

2 35.4177 81.6571 20.0002 4.7767 2.0055 

3 26.0483 78.8646 19.9998 5.7468 1.9785 

4 22.5028 77.1077 20.0002 5.1273 1.9740 

5 31.2693 77.3764 20.0019 2.7498 1.9970 

6 24.8903 77.6863 20.0002 5.2514 1.9944 

7 21.0085 75.5578 19.9992 4.5625 1.9772 

8 31.9449 80.8591 19.9998 4.8565 1.9994 

9 41.4907 82.6164 19.9999 4.3217 2.0048 

10 33.6637 83.4166 19.9982 3.3272 2.0102 

 

5. Discussion 

It can be seen from the fitting data that the PSO algorithm and its improved algorithms have 

relatively good fitting effect under the condition of uncertain initial state and loose constraints. 

Because the particles move randomly, the convergence position of some data are far from the 

convergence position of other data in the same group, but most of them are close to each other. 

The PSO algorithm can converge to a local optimum at a fast speed due to its small weight 



Metrol. Meas. Syst., Vol. 31 (2024), No. 3 

DOI: 10.24425/mms.2024.150287 

 

factor, but it is difficult to ensure that the point is the global optimum, so there is a high 

probability that accurate fitting results cannot be obtained. The convex quadratic improved 

algorithm and the tangent improved algorithm have a fast rate of inertia weight factor reduction 

in the early stage, so they converge fast. The tangent improved algorithm has a long time to 

maintain at the middle weight, so the fitting results are more stable than the convex quadratic 

improved algorithm. The other three improved algorithms search the global optimum in the 

early stage. They convergence slowly because of the slow reduction of inertia weight factor. 

Among all of the improved algorithms, the tangent improved algorithm has fast speed and 

relatively good stability, while the arctangent improved algorithm has the highest stability. 

These two algorithms have high application value under loose constraints, but also have the 

disadvantage of complex calculation of inertia weight factor reduction function. Other 

improved algorithms can easily determine the inertia weight factor reduction function, and can 

also improve their fitting stability when the initial states are relatively accurate. 

Compared to differential evolution algorithm with adaptive mutation operator, the improved 

PSO algorithm has higher accuracy. This is because differential evolution algorithm may have 

low solving accuracy when the complexity of the problem to be solved is high. In addition, the 

differential evolution algorithm needs to set upper and lower limits for each parameter to be 

solved, which is equivalent to strengthening constraints compared to the proposed algorithm. 

Therefore, the improving PSO algorithm has more advantages in solving similar problems. 

6. Conclusions 

Because it is difficult to determine the position of the characteristic points and the solution 

results are biased greatly when the characteristics are obtained from the measured outputs of 

the magnetic sensor under the coning motion directly, an improved PSO algorithm to get the 

approximate standard outputs by data fitting is proposed in this study. By comparing different 

improved strategies, the advantages, disadvantages and applicability of each strategy are 

analyzed. This method can get quite accurate estimated parameters under loose constraints and 

initial conditions. It can provide a stable and accurate supervised learning algorithm in a wide 

range of similar applications. 

Compared to the rate of change in roll angle and the rate of change in pitch angle and yaw 

angle caused by coning motion, the rate of change in pitch angle caused by trajectory is much 

smaller. Therefore, in current tri-orthogonal geomagnetic attitude measurement model, the 

pitch angle centre value is considered constant in a single calculation. The pitch angle obtained 

from each solution is treated as the initial condition for the next iteration. The attitude solution 

model should update if the trajectory model is known and this will bring more undetermined 

parameters and constraints. Because the significant computational resources required for 

improved PSO algorithm, upgrading the attitude measurement model may lead to overfitting 

and require more computation time. In subsequent research, further consideration should be 

given to improving the fitting strategy of improved PSO algorithm, so it can have better fitting 

efficiency and effect for more complex models. 
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