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Abstract 

Accurate information about the vehicle state such as sideslip angle is critical for both advanced assisted driving 

systems and driverless driving. These vehicle states are used for active safety control and motion planning of the 

vehicle. Since these state parameters cannot be directly measured by onboard sensors, this paper proposes an 

adaptive estimation scheme in case of unknown measurement noise. Firstly, an estimation method based on the 

bicycle model is established using a square-root cubature Kalman filter (SQCKF), and secondly, the expectation 

maximization (EM) approach is used to dynamically update the statistic parameters of measurement noise and 

integrate it into SQCKF to form a new expectation maximization square-root cubature Kalman filter (EMSQCKF) 

algorithm. Simulations and experiments show that EMSQCKF has higher estimation accuracy under different 

driving conditions compared to the unscented Kalman filter. 

Keywords: vehicle state estimation, square-root cubature Kalman filter, measurement noise, expectation-

maximization method. 

1. Introduction 

With the advancement of intelligent vehicle technology, the significance of advanced driver 

assistance systems, such as electronic stability control systems and collision avoidance systems, 

in active safety systems is progressively escalating. Ensuring optimal performance of these life-

saving systems necessitates a precise comprehension of the vehicle motion state [1]. 

Unfortunately, some states such as sideslip angle and longitudinal velocity cannot be directly 

measured using in-vehicle sensors [2]. Consequently, there is a pressing need for reliable online 

estimation algorithms. 

Kinematics-based approaches, commonly employing diverse sensor measurements, have 

found extensive application in vehicle state estimation. One such approach is the utilization of 

data from the Global Positioning System (GPS) to estimate these states like the sideslip angle 

and tire cornering stiffness [3]. Similar studies such as [4,5] have also demonstrated that this 

type of method has higher estimation accuracy when the vehicle is in linear operating 

conditions. Despite the Kinematics-based methods are easy to be implemented, these methods 

are vulnerable to sensor error, potential sensor failures, and the risk of GPS malfunctions. 

Furthermore, their effectiveness is hampered by either low update frequency or the high cost 

associated with GPS equipment [6]. In response to the challenges posed by kinematics-based 

estimation methods, numerous experts have advocated for dynamic-based state estimation 

approaches. These methods typically necessitate information on vehicle inertial parameters and 

tire model parameters. Methods that utilize these dynamics models in combination with 

mailto:230198933@seu.edu.cn


Y. Wang et al.: AN ADAPTIVE ESTIMATION OF GROUND VEHICLE STATE WITH UNKNOWN MEASUREMENT NOISE 

 

advanced filtering are receiving increasing attention. For example, Kalman was utilized to 

predict the roll angle and sideslip angle [7]. Due to the fact that the traditional Kalman filter is 

primarily designed for linear problems, whereas the Extended Kalman Filter (EKF) excels in 

addressing nonlinear filtering challenges, and considering the inherent complexity of a vehicle 

as a nonlinear system, methodologies based on EKF have been extensively employed for 

vehicle state estimation. Exemplary instances include the application of EKF for the estimation 

of sideslip angle [8] and tire forces [9], as well as the estimation of other vehicle states 

leveraging tire force information [10]. To enhance the adaptability of the EKF, some improved 

variants, such as the variable structure EKF [11] and interactive multiple model EKF [12], have 

proven to be effective estimation methods. Concurrently, the H-infinity EKF designed to 

accommodate noise uncertainties [13] has also been developed for the estimation of vehicle 

speed and vehicle mass parameters.  

Due to its superior performance in handling nonlinear filtering challenges, the Unscented 

Kalman Filter (UKF) often outperforms the EKF in terms of estimation accuracy of vehicle 

state. Examples include the double UKF [14] and the adaptive UKF [15,16]. Additionally, 

estimating longitudinal velocity while considering the impact of tire deformation is an effective 

method to enhance estimation accuracy [17]. To further enhance the estimation accuracy, a 

hybrid UKF [18] and a variable structure UKF [19] as well as a weight fusion UKF [20] have 

been proposed. To enhance the adaptive nature of the algorithm, the interactive multi-model 

UKF is also a worthwhile research direction [21]. The UKF is proficient at enhancing the 

estimation performance of nonlinear systems; however, when dealing with certain high-

dimensional nonlinear dynamical systems, stability may be a concern. The Cubature Kalman 

Filter (CKF) adopts a numerical integration approach for Gaussian filters and CKF surpasses 

the UKF in numerical stability and estimation performance. Therefore, CKF is promising for 

vehicle state estimation [22]. Addressing the challenge posed by unknown noise, robust CKFs 

have been introduced to improve estimation performance [23-25]. Furthermore, higher-order 

CKFs have been employed to predict vehicle states [26]. The estimation performance can also 

be effectively improved by dynamically updating the measurement noise matrix of the CKF 

using fuzzy logic systems [27]. Some researchers have taken a model adaptation approach to 

enhance the estimation accuracy. The interactive multi-model CKF [28] fuses the results from 

different models to enhance overall accuracy. Furthermore, the square-root CKF (SQCKF) 

exhibits several advantages over the traditional CKF. Firstly, it enhances numerical stability by 

representing the covariance matrix in square root (SR) form. Unlike CKF, SQCKF avoids 

Cholesky decomposition. Additionally, SQCKF tends to be more computationally efficient, 

especially in large-scale systems or high-dimensional state spaces. Considering the 

performance advantages of SQCKF, this paper utilizes SQCKF for vehicle state estimation. In 

addition, considering the uncertainty of measurement noise, a noise covariance online updating 

algorithm based on expectation maximization (EM) is designed, which is embedded in the 

SQCKF to form the EMSQCKF for estimating vehicle state. The special contributions of this 

paper are listed below 

1) A SQCKF-based estimator based on in-vehicle sensors is designed to simultaneously predict 

sideslip angle, yaw rate, and vehicle speed. The estimation performance of the proposed 

method outperforms the conventional UKF and also saves estimation costs by avoiding the 

utilization of additional sensors. 

2) Considering the effect of measurement noise, an EM algorithm is used to optimize the 

performance of the SQCKF, and by combining the two to form a new EMSQCKF it is 

possible to achieve more accurate estimation with unknown noise. 

3) Simulations and experiments show that EMSQCKF has the highest estimation accuracy 

under different driving conditions compared to UKF and SQCKF and further show that the 
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proposed algorithm is insensitive to the changes in driving conditions and has a strong 

adaptive capability. 

The rest of this paper is organized as follows. The vehicle model and problem formation are 

depicted in Section 2. The EMSQCKF is presented in Section 3. Experiment results and 

discussion are shown in Section 4. Section 5 concludes the work. 

2. Vehicle model and problem formation 

We opt for the bicycle model as delineated in reference [25] to characterize the dynamic 

response of the vehicle. The impact of air resistance and the suspension system is disregarded. 

The front wheels share identical steering angles, while the rear wheels do not have steering 

capabilities. Additionally, the center of vehicle gravity is presumed to coincide with the origin 

of the coordinate system. For a more detailed derivation of the bicycle model see [29]. Fig.1 

illustrates the schematic representation of this model. The expressions are provided in the 

following equations. 

 

 
Fig. 1. The bicycle model. 

 

   ,  (1) 

    ,  (2) 

  , (3) 

  , (4) 

where is sideslip angle, represents longitudinal vehicle velocity, represents lateral 

vehicle velocity,  and  are the front and rear tire cornering stiffnesses,  is the wheelbase, 

is vehicle mass, and are distances from the center of gravity to front axle and rear axle, 

and are longitudinal and lateral acceleration, is front wheel steering angle, is yaw 

rate. and represent the longitudinal and lateral tire forces, respectively. 

Grounded upon the aforementioned formulations, the discrete vehicle state-space model is 

articulated as follows 
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The discrete vehicle state-space model is given by 

  , (6) 

where is the measurement output function, is the sampling interval,  represents the 

process noise with a covariance matrix ,  denotes the measurement noise with a 

covariance matrix , is the state transition function, 
 
is the state vector,  signifies the 

sampling instant, the measurement vector is denoted as , the input vector is . 

3. Methodology 

In this section, the comprehensive estimation flowchart utilizing EMSQCKF is illustrated in 

Fig. 2. Initially, sensor signals from the actual vehicle are simultaneously input into both the 

EM algorithm module and time update steps of SQCKF. Specifically, the input signal in the 

EM is the lateral acceleration, while the SQCKF input signal mainly includes the front wheel 

angle and longitudinal acceleration. The EM algorithm dynamically adjusts the measurement 

noise based on the vehicle model, a priori statistic parameters of measurement noise, and the 

lateral acceleration signal. Subsequently, the updated noise is integrated into the measurement 

update process of SQCKF, creating EMSQCKF, which facilitates the simultaneous estimation 

of sideslip angle, yaw rate, and vehicle velocity. The iterative intricacies of the internal 

EMSQCKF process are detailed in Table 1.  

  

Fig. 2. The scheme of the EMSQCKF. 

3.1. SQCKF 

The SQCKF [30] stands out as an optimal state estimator, harnessing the power of a 

deterministic sampling mechanism. It not only involves the transmission of the SR of the 

prediction error covariance but also integrates the crucial element of the posterior error 

covariance. This ensures the covariance matrix maintains both symmetry and positive 

definiteness [31].  
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The SQCKF unfolds through the following iterative steps: 

1) Initialization: 

  , (7) 

  , (8) 

where e is mathematical expectation, is the covariance matrix.  

Calculate cubature points  and weights 

 ， ，  , (9) 

where variable represents the quantity of cubature points, an d is the dimension of 

. 

   , (10) 

  , (11) 

  , (12) 

 is a SR of the covariance matri x , is a SR of th 

e , is a SR of th e . 

2) Time update: 

Assess the cubature points 

  . (13) 

Update the propagated cubature points 

  . (14) 

Calculate  and 

  , (15) 

 ，  . (16) 

is the QR decomposition of the matrix. 

   (17) 

 

3) Measurement update: 

Assess the cubature points 

  . (18) 

Calculate the propagated cubature points 

  . (19) 

Calculate the predicted vector 
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  . (20) 

Calculate the SR of the innovation covariance matri x

  , (21) 

  . (22) 

Update the cross-covariance matri x   

  , (23) 

  . (24) 

Update the gain matrix , the system state  , and the covariance 

  , (25) 

  , (26) 

  . (27) 

3.2. Updating noise using the expectation maximization method 

Due to factors such as sensor aging, the measurement data includes uncertain measurement 

noise. Additionally, the diversity of vehicle types and sensors leads to varied statistical 

characteristics of measurement noise. We posit that the unidentified noise parameters are 

represented by . Employing the Maximum Likelihood criterion, we can subsequently 

initiate the estimation procedure.  

  , (28) 

 is the Maximum Likelihood estimation of . 

Next, we will leverage the Maximum Expectation algorithm framework to calculate and 

obtain a measurement noise adaptive update algorithm. We will then integrate this algorithm 

into the SQCKF, forming an EMSQCKF. The EM method is comprised of two iterative stages: 

the Expectation step (E-step) and the Maximization step (M-step). During the E-step, the 

algorithm calculates the anticipated value of the likelihood function. In the M-step, the 

algorithm determines the values of the noise parameters that maximize the likelihood function 

and utilizes them to update the measurement noise variance. 

1) E-step 

Drawing upon the Markov properties and the definitions of the likelihood function and 

conditional probability, we can decompose the likelihood function with respect to θ in the 

following manner: 

 

 , (29) 

where , and the probability density function. 

The formulation for the conditional probability of the initial state vector  is 

as follows: 

 , (30) 
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where  denotes the Gaussian distribution with mea n and variance ,  

signifies the dimension of state observation,  is denotes the determinant of the 

covariance matrix. 

Based on (20), we can derive the following expression: 

 , (31) 

where is the dimension of data. 

Based on (31)-(31), the corresponding log-likelihood function for (31) is as follows: 

, (32) 

where e and  are solely dependent on the initial state, it follows that C remains 

constant. 

By computing the mathematical expectation of (32), we obtain 

 

   (33) 

2) M-step 

The process of estimating parameters that maximize the function (33) is accomplished 

through the utilization of the gradient descent algorithm. 

  . (34) 

Moreover, taking into account that the noise matrix is diagonal, we have 

  . (35) 

To further facilitate real-time computation, we write it in recursive form  

 . (36) 

Let (36) be embedded in the SQCKF forms EMSQCKF, which is iterated as follows in 

Table 1.  

Table 1. The EMSQCKF method 

Estimation Framework  

Step1: Set ,  

Assess cubature points  and weights  

 ， ，  

Step2：Time update 

Assess the cubature points:  

Update the propagated cubature points:  
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Update the predicted state  and : 

 , ，  

  

Step3：Measurement update： 

Assess the cubature points:  

Calculate the propagated cubature points:  

Calculate the predicted measurement vector:
  

Calculate the square-root of the innovation covariance matri x  

, 

  ,  

Calculate the cross-covariance matri x  using (24) 

The filter gain  and  are calculated by (25) and (26). 

Update the covariance  

Step 4： At the next iteration loop, steps 2 to 3 will be repeated. 

4. Results and discussion 

4.1. The simulation test 

Simulation experiments are performed to validate the EMSQCKF. During the testing phase, 

the output values from Carsim software are compared with the estimated values derived from 

SQCKF and UKF. In the simulation environment, the vehicle driving on a wet asphalt road(see 

Fig.3), performed a lane change at a velocity of 54 km/h. Figs. 4 and 5 illustrate the front wheel 

angle and the lateral acceleration. 

  

Fig. 3. The double lane change test on a wet asphalt road. 
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 Fig. 4. The front wheel angle on a wet asphalt road. 

 

 Fig. 5. The lateral acceleration on a wet asphalt road. 

 

 Fig. 6. The yaw rate on a wet asphalt road. 
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 Fig. 7. The vehicle velocity on a wet asphalt road. 

In Fig. 6, the yaw rate estimation outcomes obtained through various approaches are 

displayed. The red solid line represents the vehicle state output from the Carsim software, 

serving as a reference value. Due to the dynamic nature of driving conditions and the ever-

changing operational environment of sensors, the measurement noise parameters undergo 

continuous variations. To compare the impact of dynamic noise updates, the noise parameters 

of the three estimation algorithms are artificially set to deviate from their true values. 

Observably, SQCKF exhibits superior performance over UKF, attributed to CKF's numerical 

stability advantages and its utilization of cubature points. Furthermore, EMSQCKF surpasses 

both SQCKF and UKF in terms of estimation accuracy. Within EMSQCKF, the noise 

parameters undergo dynamic adjustments via the EM method, allowing EMSQCKF to adapt to 

diverse operational conditions. 

 

Fig. 8. The sideslip angle on a wet asphalt road. 

Table 2. RMSE of different methods on a wet asphalt road. 

Symbol     

UKF 0.0197 0.1255 0.1811 

SQCKF 0.0169 0.0128 0.1194 

EMSQCKF 0.0142 0.0092 0.0519 

 

In Figs. 7 and 8, the estimation outcomes for vehicle velocity and sideslip angle are depicted, 

respectively. Notably, among the three methods, EMSQCKF consistently yields the most 

accurate estimation results. To provide a clearer representation of estimation errors, we employ 
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the root mean square error (RMSE) as a metric for assessing the estimation accuracy of 

different algorithms. As presented in Table 2, EMSQCKF exhibits the smallest RMSE, 

signifying its superior estimation accuracy. Furthermore, to verify the effectiveness of our 

algorithm on different road surfaces, we also conducted tests on ice and snow roads, and the 

estimation results of different methods are shown in Table 3. It can be seen that EMSQCKF 

also has the best estimation performance. 

Table 3. RMSE of different methods on a snow road. 

Symbol     

UKF 0.0372 0.1758 0.2655 

SQCKF 0.0358 0.0214 0.1967 

EMSQCKF 0.0331 0.0193 0.1274 

4.2. The real vehicle test 

To test the EMSQCKF approach, we initially gathered offline data from actual vehicle tests 

carried out on dry asphalt roads. The test scenario is illustrated in Fig. 9. For safety 

considerations, a steering robot is employed to execute steering maneuvers during the real 

vehicle tests. The use of a steering robot offers the advantage of executing continuous steering 

maneuvers with minimal fluctuation. Reference values, acquired from differential GPS 

measurements, are utilized for comparison with estimates generated by various algorithms.  

The initial velocity is 73.7 km/h. Figs. 10 and 11 illustrate the front wheel angle and the 

lateral acceleration. Fig.11 depicts the yaw rate estimation outcomes from various methods. 

The yaw rate estimation curve of the UKF deviates significantly from the reference value. The 

SQCKF surpasses the UKF in terms of estimation accuracy, attributed to its enhanced numerical 

stability and superior sampling. In the conducted test, an initial random value is assigned as the 

measurement noise, followed by dynamic adjustments of the noise parameters using the EM 

method. The results demonstrate that the EMSQCKF outperforms the standard SQCKF. 

  

 Fig. 9. The test vehicle on a dry asphalt road. 
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Fig. 10. The front wheel angle in the real vehicle test. 

 

Fig. 11. The lateral acceleration in the real vehicle test. 

Figs. 13 and 14 present the outcomes of different methods for predicting vehicle speed and 

sideslip angle. In line with the yaw rate estimation findings, the EMSQCKF consistently 

provides the most accurate estimates compared to the other two methods. The results in Table 

4 underscore the highest performance of the EMSQCKF, showcasing significantly lower 

RMSE values. This underscores the efficacy of EMSQCKF in precisely estimating the vehicle 

states. Moreover, the proposed algorithm exhibits optimal estimation performance in both 

simulation and real vehicle experiments, underscoring its strong adaptability to variations in 

driving working conditions. 
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Fig. 12. The yaw rate in the real vehicle test. 

 
Fig. 13. The vehicle velocity in the real vehicle test. 

 
Fig. 14. The sideslip angle in the real vehicle test. 

Table 4. RMSE of different methods in the real vehicle test 

Symbol     

UKF 0.0801 0.1861 0.6460 

SQCKF 0.0551 0.0693 0.4288 

EMSQCKF 0.0530 0.0364 0.2100 

5. Conclusions 

In this article, an EMSQCKF is proposed to estimate sideslip angle, yaw rate, and vehicle 

speed in the presence of unknown measurement noise. Utilizing the EM method, the noise 

parameters are dynamically updated, enabling the EMSQCKF to more accurately estimate the 

vehicle state amidst unknown noise. Test results demonstrate that the EMSQCKF exhibits 

superior estimation accuracy compared to SQCKF and UKF in different driving working 

conditions. This proposed method effectively provides more precise control parameters to the 

assisted driving system in real driving scenarios, contributing to enhanced vehicle driving 

safety. 

Moreover, it is assumed in this study that vehicle model parameters are known in advance. 

In practical situations, varying usage scenarios may lead to changes in inertial parameters, such 

as vehicle mass, and online estimation of these parameters can further enhance the estimation 

accuracy. As the model-based estimation is somewhat simplified, model accuracy may be 
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compromised under complex working conditions. Therefore, exploring data-driven approaches 

for constructing vehicle models represents a valuable avenue for future research. 
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