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Abstract 

The occurrence of asymmetric probability distributions is quite common. Phenomena such as salary, number of 

failures, sound level values, etc. have skewed distributions. In such cases, estimating the mean using the interval 

method can be inaccurate as it ignores the distribution's asymmetry. Another method of constructing confidence 

intervals, which does not require symetry of distributions, is the method based on Chebyshev's theorem. However, 

the intervals thus obtained are symmetrical. The approach proposed in this article uses the concept of Chebyshev's 

theorem and semivariances to construct new confidence and uncertainty intervals. The article examines the 

properties of semivariance-based confidence intervals for long-term noise indicators from acoustic monitoring of 

the city of Gdansk and compares them with classical confidence intervals. The new uncertainty assessment tool 

proposed in this article in the form of a semivariance-based uncertainty interval can therefore be the basis for new 

uncertainty assessment methodology and more effective uncertainty. 

Keywords: metrology, asymmetry confidence intervals, uncertainty evaluation, semivariance, 3σ rule 

generalization. 

1. Introduction 

Measurement uncertainty assessment is one of the basic issues in metrology. In the 

measurement process, there are many measurement uncertainty components that constitute the 

uncertainty budget [1]. All uncertainties present in the uncertainty budget are aggregated based 

on the measurement function. The most common method of compounding measurement 

uncertainty is the uncertainty propagation method [1, 2, 3, 4]. Two types of measurement 

uncertainty can be distinguished: type A uncertainty, which is related to measurement 

repeatability, and type B uncertainty, which is most often associated with the specification of 

measurement equipment or its accuracy. Type A uncertainty is expressed in terms of standard 

deviation or multiples thereof. This value is most often determined by a confidence interval. 

Confidence intervals, however, can be calculated using, for example, the classic Spława-

Neyman definition or using Chebyshev's theorem. The first type of construction imposes a 

specific required percentage of coverage by the confidence interval of the true value. The 

second approach determines the minimum coverage value for a given distribution. The main 

disadvantage of classic confidence intervals is their symmetry. These intervals are constructed 

based on the assumption of normality of the characteristic distribution for which the confidence 

interval is determined. When a feature does not have a normal distribution, the Central Limit 

Theorem is used as well as the asymptotic behaviour of the mean value. However, in the case 

of measurements where the confidence interval is determined for small measurement samples, 

the distribution of e.g. the mean value cannot be assumed to be normal. In this case, the 

determination of the classic confidence interval is not correct, which manifests itself primarily 
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by not meeting the assumption of coverage by the confidence interval of the unknown 

parameter. Methods based on Chebyshev's Theorem, which does not require an assumption 

regarding the normality of the feature distribution, should then be used. Based on Chebyshev's 

inequality, the confidence interval created does not have an assumed percentage coverage level, 

only a minimum coverage level. However, the forms of confidence intervals constructed on the 

basis of this theorem either have the form of a symmetric confidence interval (1) or refer to 

forms that do not include sample variation characteristics (e.g. variance). (4,5,6,7,8,11). 

This article focuses on the Chebyshev inequality approach and proposes its generalization 

using semivariance. The confidence intervals proposed in the paper created using semivariance 

on the one hand consider the asymmetry of the characteristic distribution by including left and 

right semivariance. On the other hand, they are based on Chebyshev's Theorem, which does not 

require assumptions about the normal distribution of the characteristic This is a new approach 

not previously used. 

Section 2 proposes a form of confidence interval constructed using semivariance. 

A minimum coverage level was also determined for sample probability distributions. Section 3 

proposes the construction of an uncertainty interval using semivariance. Based on 

measurements from traffic monitoring in the city of Gdansk, a comparison was made between 

the percentage coverage obtained when applying the classic uncertainty interval and the 

uncertainty interval for semivariance depending on the measurement sample size. 

1.1. Chebyshev's theorem and its generalizations 

Chebyshev's inequality, well known in mathematics and statistics, is primarily used to 

estimate different types of probabilities when the mean and variance are estimated based on  

a sample. Let  denote the random variable for which  and . From 

the classical Chebyshev's inequality, also called the Bienaymé-Chebyshev inequality [5], it 

follows that for any  the following condition is satisfied 

  (1) 

Chebyshev's inequality results directly from Markov's inequality [6]  

  (2) 

sometimes called Chebyshev's first inequality, after using the substitution  

and .  

Under the additional assumption , Chebyshev's inequality takes the form  

  (3) 

Only the case  is useful because for  the condition  holds and the estimation 

given by the inequality becomes trivial.  

Chebyshev's inequality guarantees that for a random variable with any probability 

distribution, only a certain percentage of the values are further away from the mean than 

a predetermined value. In particular, no more than  values of the distribution can be  or more 

standard deviations from the mean. This rule is often referred to as Chebyshev's theorem, 

concerning the range of standard deviations around the mean in statistics. Chebyshev's 

inequality can be applied to any probability distribution where the mean and variance are 

defined. In this particular case, we know that  and 

, which means that at least 75% of the values of the random variable must be within two 

standard deviations of the mean and at least 88.89% within three standard deviations. The 
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practical application of Chebyshev's inequality is similar to the well-known rule 68-95-99.7, 

which, however, applies only to normal distributions.  

Many generalizations of Chebyshev's inequality have been developed. For example, lower 

limits are given for the probability of intervals that are not necessarily symmetric around the 

mean  

 
𝓊

 (4) 

if  and , where  and 

 [7,8], which for the case of symmetric intervals coincide with Chebyshev's 

inequality.  

Inequalities have been proved for the case of two random variables that need not be 

independent [8]:  

  (5) 

Inequalities are also given for the case of a bivariate distribution when the variables are 

correlated [9], and  denotes the correlation coefficient between them:  

  (6) 

More general estimates for the two correlated variables were also obtained by Lal [10]:  

  (7) 

Isii [11] has shown that if  

  (8) 

  (9) 

where , is:  

1. if  and , then  

  (10) 

2. if the above conditions are not satisfied, i.e.  or  but  and 

then 

  (11) 

3. if none of the above applies, there is no universal bound other than 1.  

Inequalities were also derived for the case of multiple independent variables [12] or 

correlated variables with known correlation coefficients between each pair of variables [13, 14, 

15]. Numerous modifications of Chebyshev's inequality using, for example, moments of higher 

orders or bounded random variables were given.  

The universality of Chebyshev's inequality allows it to be used for any probability 

distribution, although the resulting estimates are not always optimal. In many cases, for certain 

types of distributions, these estimates can be improved [16]. Estimates are much better for 

variables with a standardized normal distribution, for example [17].  
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An alternative way to improve estimates is to use semivariance. The upper ( ) and lower 

( ) semivariance are defined as follows:  

 (12) 

where , . Of course 

. Chebyshev's inequality using lower semivariance [18] 

  (13) 

after substitution  has the following form  

  (14) 

The use of semivariance improves Chebyshev's inequality in this case  times.  

A similar estimate is also true for the upper semivariance, so by taking  

we obtain  

  (15) 

Semivariance has long been used in downside risk estimating in finance [19, 20, 21, 22]. 

Markowitz argued that "semivariance is a more reliable measure of investment risk" than the 

mean-variance theory he developed [23]. Nowadays, semivariance is also successfully applied 

in agricultural sciences [18].  

For symmetric distributions, the condition  gives a known estimate for 

a variable with a normal distribution. Due to the inequality of  the use of semivariance 

for asymmetric distributions significantly improves the estimate.  

2. Construction of confidence intervals based on semivariance 

For many distributions, especially asymmetric ones, there is a need to modify the classical 

 rule. The following theorem, using semivariance, is a proposal for such a modification. 

 

Theorem (Chebyshev's inequality for semivariance) 

Let  be a continuous variable for which  and . Then

  (16) 

Normally, for the  interval we take  but in this case we have  For 

 finally we have 

  (17) 

In the case of a symmetric distribution we have . Thus, the 

following condition holds 

  (18) 

Based on the inequality between the arithmetic mean and the harmonic mean 

  (19) 

we have 

  (20) 
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Therefore, for any continuous random variable with parameters ,  the 

following condition holds 

  (21) 

2.1. Examples of application of the  rule for selected distributions 

a) Let  be a random variable with normal distribution truncated on the interval , whose 

density function is given by the formula 

  (22) 

where  is the distribution function. Then the following equations are true 

  and . (23) 

b) Let  be a random variable with exponential distribution with parameter , whose 

density function is given by the formula  

  (24) 

Then the following equations are true 

  (25) 

c) Let  be a random variable with gamma distribution with parameters  and  

whose density function is given by the formula 

  (26) 

Then the following equations are true 

  (27) 

  (28) 

The following inequalities: 

a) for truncated normal distribution 

  (29) 

  (30) 

b) for exponential distribution  

  (31) 

  (32) 

c) for gamma distribution 

  (33) 

will be used in the estimation of 

  (34) 

We get from here 
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a) for truncated normal distribution 

  (35) 

b) for exponential distribution  

  (36) 

c) for gamma distribution 

  (37) 

3. Verification of confidence intervals based on semivariance for long-term sound level 

indicators  

Long-term noise indicators are used to assess road noise: the day indicator  (38) 

  (38) 

calculated as the logarithmic mean of day A sound levels from all days of the calendar year 

from 6 a.m. to 6 p.m.;  

the evening indicator  (39) 

  (39) 

which is the logarithmic mean of evening A sound levels calculated from the whole calendar 

year from 6 p.m. to 10 p.m., the night indicator  (40)  

 , (40) 

calculated from the whole calendar year for the night time from 10 p.m. to 6 a.m., and the day-

evening-night indicator calculated from the long-term indicators (41) as a weighted logarithmic 

mean of these indicators according to the formula [24]: 

 . (41) 

In measurement practice, for technical and economic reasons, noise indicators are rarely 

calculated from all days of the calendar year. In this approach [25], the number of measurement 

days is minimized, leading to noise indicator estimation based on a very small measurement 

sample. Consequently, such a process requires, in addition to providing the indicator's value, 

also determining the uncertainty with which that value was determined [1, 26]. This uncertainty 

is most often given in the form of a 95% confidence interval. The size and coverage of this 

interval is, obviously, influenced by many different factors, such as uncertainty in the measuring 

device, uncertainty related to weather conditions, etc., but especially important is the 

uncertainty related to the measurement sample selection. It is this uncertainty that contributes 

the most to the uncertainty budget for noise indicators. 

One of the assumptions that allow classical confidence intervals to be used to determine 

uncertainty is to make an assumption about the normality of the average energy of single-day 

indicators  [27, 28]. This assumption is being made due to the 

additivity of acoustic energy, as opposed to decibel levels. For normal energy level distribution, 

one can assign to an energy mean  a Student's t-distribution and 

calculate the uncertainty interval for that mean then transform it by a logarithmic transformation 
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and get the uncertainty interval for the given indicator  

 ,  (42) 

where  is the standard deviation of acoustic energy. 

For small deviations from the normal distributions of energy distributions, the arithmetic 

mean of the energy levels can be assigned a normal distribution under the Central Limit 

Theorem (CLT) and the uncertainty propagation method can be applied to this mean [27, 28].  

In paper [28] in which the results of measurements from traffic acoustic monitoring in the 

city of Krakow were examined, and in paper [29] where probability distributions from 

monitoring in the city of Gdansk were examined, it was shown that the parameters of noise 

indicators distributions (skewness and kurtosis) of noise are far from the normal distribution 

characteristics. These deviations may be so large that a large measurement sample would have 

to be taken to apply CLT, which is not economically justified when estimating noise indicators 

for example in large cities. Even larger deviations from normal distributions were observed for 

energy levels. Which analogously affects the inapplicability of CLT for the energy average and, 

consequently, to obtain an uncertainty interval for the noise indicator with appropriate statistical 

properties, especially for small measurement samples [30, 31, 32, 33, 34]. The deviation of the 

distribution of the measurement sample mean energy from the normal distribution results in the 

lack of the required 95% confidence interval coverage. This can be seen in the work [31] where 

for 26 measurement points in Madrid it was shown that for classical confidence intervals, the 

coverage of the true value by the confidence interval is much less than the required 95%. 

Due to the fact that the method of determining confidence intervals proposed in the article 

does not assume knowledge of probability distributions and considers the distribution's 

asymmetry, the proposed construction should better cover the true value of the mean. 

To verify the applicability of confidence intervals based on semivariance to determine 

uncertainty intervals for noise indicators, the following interval form was proposed (43) 

 ,  (43) 

To maintain the proportion, an extension factor was chosen for the interval based on 

semivariance similar to the classical interval . In addition, from the fact that the 

variance of the distribution is the sum of the semivariances, which also translates into standard 

deviations as follows: s=  in place of the standard deviation in formula (42), the two 

left and right deviations are taken, respectively. It is worth noting that the proposed method 

(43) does not assume a percentage of true value coverage, unlike the standard interval (42). 

This interval (43) only assumes a minimum value of coverage depending on the distribution 

(Section 2.1). The form of the interval (43), however, was chosen to assume  and 

 instead of , respectively, due to the fact that the sum of the left and right 

semivariances is the variance of  so assumed values ensure comparability of 

interval lengths while introducing asymmetry into the uncertainty interval. 

The following experiment was then proposed to verify the properties of the interval thus 

constructed and to compare it with the classically used interval (42). The data for the experiment 

consisted of annual measurements of traffic sound levels in the city of Gdansk from 3 

measurement stations. The average values of the noise indicators  and  were 

determined from the entire calendar year. These values were taken as population average sound 

level indicators. From the entire measurement year, 5-, 10-, 20-, 30- and 50-element samples 

were drawn separately for each station. This draw was repeated  times for each sample 

size. For each drawn sample, two uncertainty intervals were calculated as defined by equations 
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(42) and (43). The coverage of the population mean value by each interval was then checked 

by counting the percentage coverage for each sample size separately.  

3.1. Measurement data 

Measurement data comes from continuous monitoring in the city of Gdansk from January 1, 

2015 to December 31, 2015. Technical details of the monitoring station and monitoring can be 

found in the publication [29]. The measurement dataset chosen for the experiment is the nearly 

complete annual measurements of sound levels. The numbers of measurement days are 

presented in Table 1. Missing measurements for stations (130) 7 days, (134) 4 days, (141) 1 

day were random and did not affect the quality of the measurements. Therefore, for each 

measuring station, a nearly complete set of indicator values was available to determine 

, and  values for the entire year of 2015. 

The coverage of confidence intervals, both classical (42) and based on semivariance (43), 

was checked for indicators , , ,  for measurement data for the following stations: 

(130) 41 Pomorska Street - the station is located on a residential building near a two-lane single 

carriageway road. 
(134) 26 Sienna Street - the station is located in a primary school building. Near the station is 

an intersection of two dual carriageway roads with a streetcar track. 

(141) 1 Rybacka Street - the monitoring station is located on a service building near the 

intersection ( traffic circle) of two single-lane roads.  

Basic statistics have been determined for the measurement data from the above stations and 

are included in the table. 

Table 1. Summary statistics for measurements from individual monitoring stations by indicator  

,  

No. of 

measuring 

station 

Numbers of 

measurement 

days  

Indicator 

type 

 

(mean) 

[dB] 

 

(standard 

deviation) 

[dB] 

 

(logarithmic 

mean of the 

sound level) 

[dB] 

 

(skewness) 

[-] 

 

(kurtosis) 

[-] 

130 358 

 69.65 1.53 69.91 0.18 -0.23 

 68.49 1.13 68.61 0.88 1.60 

 63.18 1.43 63.34 1.07 1.56 

 71.88 1.17 72.02 0.88 1.18 

134 361 

 66.15 2.82 67.08 -0.12 0.95 

 64.69 2.23 65.32 0.30 1.48 

 60.50 2.23 61.23 1.08 3.45 

 68.88 2.09 69.43 0.37 1.53 

141 364 

 66.13 2.86 67.47 1.16 3.10 

 65.47 2.99 67.25 1.72 5.31 

 59.87 3.73 62.91 1.76 4.83 

 68.93 3.02 70.83 1.94 6.15 

The measurement data were selected to ensure that the indicators represented different 

values of skewness and kurtosis. 
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3.2. Results 

5, 10, 20, 30 and 50-element measurement samples were drawn and two intervals were created 

based on them, a classical interval for the mean value of energy levels (42) and a confidence 

interval based on semivariance (43). Each sample, respectively, for each indicator 

,  was determined separately so as not to burden the distributions with 

correlation. The calculations were conducted in R-Studio software. 

Each sampling was repeated one million times then determined what percentage of the 

confidence intervals cover the true value of the index. Table 2 presents the results obtained. 

Table 2. Percentage coverage of confidence intervals for station no. 130 

Measurement 

sample size 

Classic interval Interval based on semivariance 

        

5 93.3% 89.7% 87.1% 89.3% 96.6% 94.9% 92.2% 94.7% 

10 93.5% 90.8% 88.4% 90.0% 97.0% 95.3% 92.4% 94.8% 

20 94.6% 92.3% 90.2% 92.2% 97.8% 95.9% 93.2% 95.7% 

30 95.1% 93.3% 92.0% 93.4% 98.2% 96.4% 94.3% 96.1% 

50 95.9% 94.7% 93.9% 95.0% 98.6% 97.0% 95.2% 96.9% 

Table 3. Percentage coverage of confidence intervals for station no. 134 

Measurement 

sample size 

Classic interval Interval based on semivariance 

        

5 87.3% 88.7% 72.2% 85.5% 95.8% 94.1% 82.7% 93.4% 

10 89.8% 88.4% 76.4% 87.7% 95.3% 93.6% 86.3% 94.5% 

20 88.7% 89.0% 79.6% 88.9% 94.7% 93.6% 84.7% 94.3% 

30 89.0% 90.% 83.8% 90.7% 94.7% 94.2% 85.8% 94.7% 

50 90.8% 92.2% 87.9% 92.9% 95.0% 94.8% 87.3% 95.4% 

Table 4. Percentage coverage of confidence intervals for station no. 141 

Measurement 

sample size 

Classic interval Interval based on semivariance 

        

5 73.5% 63.4% 50.8% 55.9% 78.1% 66.4% 52.8% 60.2% 

10 74.7% 65.6% 52.8% 59.7% 78.2% 71.9% 55.1% 62.7% 

20 77.3% 65.3% 60.0% 64.1% 78.8% 72.7% 64.4% 71.1% 

30 80.3% 68.4% 63.7% 68.7% 81.6% 74.7% 66.9% 73.2% 

50 83.7% 71.9% 70.8% 75.4% 84.5% 75.8% 72.7% 77.9% 

 

The coverage percentage for the classical interval differs from the coverage value for the 

semivariance-based confidence interval, as can be observed in Tables 2-4. Each time, an 

interval based on semivariance gives more coverage than a classically determined interval. For 

station no. 130, 5-element measurement samples already give coverage close to 95%, while for 

the classic range, the coverage is a few percent less, depending on the indicator. It can also be 

observed that as the skewness and kurtosis values increase, the coverage percentages are much 

lower than the required 95%, however, it is worth noting that for a confidence interval based 

on semivariance, this is a few percent more than for a classical interval. In addition, the 

confidence interval based on semivariance does not have a defined required coverage of the 

true value, as is the case with the classical confidence interval, which should be 95%.  
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4. Conclusions 

The article presents a generalization of Chebyshev's theorem for semivariance. Inequality 

variants are presented for specific distributions: truncated normal, exponential and gamma. 

A generalization of the 3 sigma rule using semivariance is also presented. 

It also demonstrates how to create confidence intervals based on Chebyshev's theorem and 

shows how it can be used in determining uncertainty from long-term noise indicators used in 

environmental noise protection. 

Confidence intervals based on semivariance were also compared with classical confidence 

intervals based on long-term noise indicators from acoustic monitoring data from the city of 

Gdansk. Classical confidence intervals require that the probability distribution of the random 

variable of sound level energy is normal or the measurement sample is large enough to use 

CLT. Measurement practice shows, however, that such a situation occurs very rarely (e.g. for 

industrial noise). It is shown that a confidence interval based on semivariance gives better 

coverage values than the classical confidence interval applied to energy means. This is due to 

the fact that a confidence interval based on semivariance considers the asymmetry of the 

empirical distributions from which the measurement sample is drawn, as opposed to classical 

intervals. Confidence intervals based on semivariance can therefore be a better alternative for 

determining measurement uncertainty than classical confidence intervals and the classical 

Chebyshev's Theorem not only for noise indicators but also for other indicators in the natural 

sciences or engineering, where measurement functions are nonlinear and indicator probability 

distributions differ significantly from normal distributions. The new uncertainty assessment 

tool proposed in this paper can form the basis of a new methodology for determining uncertainty 

when small measurement samples are available and when the distribution of the characteristic's 

mean value is not normal. 
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Appendices 

Theorem Proof (Chebyshev's inequality for semivariance) 

From Markov's inequality we obtain 

 

 

 

 

By substituting , and , we get 
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As a result, we obtain 

 

□ 

Proof of semivariance formulas for individual distributions: 

 

a) normal truncated 

 

 

 

 

 

 

 

 

 

 

Calculations for  are carried out in the same way. 

b) exponential distribution 

 

 

 

 = 

 = 

 

c) gamma distribution 
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