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Abstract 

Because the polarization direction is unknown in free-space three-dimensional (3D) electromagnetic pulse (EMP) 

measurement, the components in three directions are usually measured first, and then the total vector is calculated. 

The waveform (magnitude) and polarization direction define the 3D process. Because of the uncertainty produced 

in component measurement, there is also uncertainty in the calculated 3D process. This paper investigates the 

propagation of uncertainty during the total vector calculation process. The magnitude and polarization angle 

uncertainty propagation formulas are derived through analysis. The results show that the uncertainty of the 

calculated magnitude is less than the maximal measurement uncertainty of the three components, and the 

uncertainty of the polarization angle is less than sqrt(2) times the maximal uncertainty of the three components 

divided by the magnitude of the measured field. Finally, a Monte-Carlo (MC) simulation is run to validate the 

results of the analysis. The simulation results agree well with the analysis results. 

Keywords: uncertainty, three-dimensional, measurement, electromagnetic pulse. 

1. Introduction 

Measurement is an important method for obtaining the parameters of the electromagnetic 

pulse (EMP) in the field of electromagnetic compatibility and high-power electromagnetism. 

In practice, measuring free space three-dimensional (3D) EMP is of great interest. The 

magnitude and polarization in spherical coordinates or three components in rectangular 

coordinates are commonly used to characterize the 3D EMP. The two groups of parameters 

characterized by spherical coordinates and rectangular coordinates can be converted to each 

other. In practice, the EMP is measured by first measuring the one-dimensional (1D) 

components of three orthogonal directions, and then calculating the magnitude and polarization 

direction of the 3D process. The components can be measured simultaneously by different kinds 

of 3D detectors, such as the 3D pulsed electrical detectors [1-3] and the 3D optical passive 

electric field sensors [4-6]. 

In measurement, we are concerned not only with the measured results but also with 

measurement uncertainty. In fact, the component measurement method is equivalent to 

measuring the components simultaneously with three independent 1D detectors with 

measurement uncertainty. The measurement uncertainty of each independent component is 

commonly evaluated using the Guide to the Expression of Uncertainty in Measurement (GUM) 

[7] or the Monte-Carlo method (MCM) [8, 9]. More specifically, there have been numerous 

studies on the uncertainty evaluation focusing on the sensor-based measurement of EMP [10-

13]. Regarding the engineering application, the measurement uncertainty of the EMP 

measurement can be roughly divided into three sources: the uncertainty of the measurement 

system itself, the uncertainty introduced in the calibration [14], and the uncertainty introduced 
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by the measurement implementation [15]. We prefer to use the GUM method to estimate the 

measurement due to the constantly changing state and environment involved in measurement, 

taking engineering applications into consideration. In most cases, Type A uncertainty statistics 

are used to determine the measurement system's uncertainty itself. The uncertainty in the 

calibration and measurement process is usually determined by the GUM method which 

combines Type A uncertainty with Type B uncertainty. For the calibration of pulsed electric 

field sensors based on the standard field method, the calibration uncertainty can be obtained 

through hybrid methods such as calculation and analysis [16, 17]. The uncertainty propagation 

process for the fitting method of calibration data during the fitting can be estimated as well [18]. 

Factors such as measurement position polarization direction mismatch are taken into account 

for the measurement procedure, and a relative reasonable analysis result can also be obtained 

[19]. The measurement uncertainty of a 1D measurement system can thus be obtained based on 

the existing methods and processes.  

However, a single 1D component’s uncertainty can’t directly represent the uncertainty of the 

magnitude and polarization direction of the 3D process. The uncertainties of the components 

are related to the uncertainties of the calculated magnitude and polarization directions. It is 

necessary to study the uncertainty propagation in the calculation process and obtain an 

estimation formula corresponding to the uncertainties of components in order to evaluate the 

3D EMP calculation. This paper investigates the uncertainty propagation of the 3D EMP during 

the calculation process based on the measured 1D components. Section II describes the 

uncertainty modelling; Section III analyzes the uncertainty of the magnitude and polarization 

direction by the GUM method; Section IV verifies the analysis conclusion by MCM method; 

and Section V summarises this article. 

2. Uncertainty modelling 

An arbitrary electromagnetic process under measurement can be divided into three 

orthogonal components. The electric field under measurement is defined as (1). The results 

apply to the magnetic measurements. 

 
 
, (1) 

where E denotes the process under measurement, and E1, E2 and E3 denote the three orthogonal 

components respectively.  

It should be noted that E1, E2, and E3 are all time-dependent parameters: E1(t), E2(t), and 

E3(t). As the measurement results are represented by time discrete data, we usually calculate 

the measurement results at different discrete times and then form the waveform of the 3D EMP 

based on the discrete values. As a result, the measured electromagnetic transient can be reduced 

to a vector for a fixed time instant t0. The uncertainties of the three components obtained 

through measurement can then be represented by three values. All of the parameters used in 

this paper are assumed at a fixed time t0, and the conclusions are valid at any time t. 

In the measurement, the components are measured by a 3D probe, which can respond to the 

electromagnetic process in three different directions at the same time. Obviously, measurement 

uncertainty existed for each measured component. Similarly, for a fixed time t0, the measured 

results can be described as (2). 

 , (2) 

where Em denotes the measured process, Em1, Em2 and Em3 denote the measured components, 

respectively. 
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Considering the measurement uncertainty in every component, describe the measured results 

as (3). 

 , (3) 

 , (4) 

where δ1, δ2 and δ3 denote the measuring errors of the components E1, E2 and E3 respectively. 

For a function Y= f(X1, X2,…Xn), y is the evaluated value of Y, x1,x2,... xn is the evaluated 

value of X1, X2,..., Xn, and all the components are uncorrelated. The combined standard 

uncertainty of measurement is given by the equation of guide 10.b [20].  

 . (5) 

Notice that the field E1, E2, E3 is the true value of the three components that the uncertainties 

should be 0, the uncertainties of components Em1, Em2 and Em3 equal the uncertainties of 

measuring errors δ1, δ2 and δ3 respectively based on (3) and (4). Define the uncertainties of 

components Em1, Em2 and Em3 as u1, u2 and u3, as shown in (6), which can be evaluated before 

measurement. 

  (6) 

Based on the definition of uncertainty, the uncertainties can be calculated by (7): 

 . (7) 

The uncertainty of an EMP measurement system can be composed of Type A uncertainty 

and Type B uncertainty. This includes both randomness and systematic uncertainty 

components. The expected value can be considered as 0 for the random components. The 

deviation of the systematic components, however, is usually a fixed value. The uncertainty 

components related to the systematic deviation of an EMP measurement system mainly include 

the deviation of the calibration coefficient and the sensor jitter caused by temperature change. 

For the calibration of sensor coefficients, the calibration instruments such as oscilloscopes and 

attenuators in is usually traced through the metrology laboratory before calibration and 

eliminate their systematic errors to ensure the accuracy of the calibration devices. On the other 

hand, for the calibration process of the standard field method, the standard deviation generated 

in the calibration device is corrected according to the preliminary analysis results, and the 

uncertainty of the oscilloscope measurement and other processes is reduced as much as possible 

by the method of multiple calibration. Sensor jitter due to temperature changes is not strictly a 

completely systematic deviation component, but it can be approximated as a fixed deviation 

value compared to a very short measurement process, and similar deviations will be exhibited 

by similar sensors. We have also minimized it by means of sensor thermal insulation and 

coefficient compensation, which can technically be controlled within 1%. After considering the 

elimination of the above components of systemic uncertainty, it can be approximated that the 

expected value of the measurement uncertainty δi is approaching 0: 

 . (8) 

The measured results that are characterized by rectangular coordinates commonly need to 

be exchanged into spherical coordinates that contain magnitude and polarization direction. The 

uncertainties of magnitudes can be expressed as root-mean-square (RMS) values as well, as 

shown in (9) 
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 , (9) 

where |E| and |Em| denote the magnitude of the truth-value and the calculated results based on 

measurement respectively. 

 , (10) 

 . (11) 

Define a parameter α to denote the angle of the polarization direction between |Em| and |E|. 

Considering that the value of α for a completely accurate measurement should be 0, the 

uncertainty of α is expressed as (12). 

 , (12) 

where α is calculated by (13). 

 . (13) 

With the representation of uncertainty in magnitude and polarization, the uncertainty 

propagation in the calculation can be analyzed.  

For the same type of measurement system, as mentioned above, there must be a correlation 

between any two 1D sensors due to the influence of many factors, such as the uncertainty 

components caused by the systematic errors. However, in the analysis below, the measurements 

of the three components of the sensor are considered uncorrelated. This is true based on the 

assumption that the uncertainty components that have a systemic impact on the measurement 

(e.g., the systematic error of the calibration coefficients) and the factors that cause the 

interference of the three component measurements (e.g., antenna mutual coupling) have been 

fully considered and deducted as much as possible. The mutual coupling and interference 

amongst sensors are often taken into account in the sensor design. The effect of mutual coupling 

between antennas is related to the frequency of the signal being measured. As the frequency of 

the measured electric field increases, its wavelength is comparable to that of the three-

dimensional sensor, and the coupling will increase greatly. This article focuses on the 

measurement of electromagnetic pulses (lightning electromagnetic pulses, high-altitude 

electromagnetic pulses, and electrostatic discharges), which typically cover a frequency of less 

than 500 MHz. Generally speaking, the mutual coupling between antennas can be controlled 

within a small amount of field signals below 1 GHz [21]. In the case of a large impact on mutual 

coupling, the effect of mutual coupling between antennas will be corrected through calibration 

[21]. After design considerations and calibration corrections, it is possible to control the antenna 

mutual coupling at 2% (34 dB). If we introduce this in our formulation for the mixed derivative 

terms, such terms result in smaller than 2% of the magnitude of the field and can be disregarded 

at a first approximation. Moreover, if the systematic deviations such as the sensitivity 

coefficients mentioned above are fully considered and corrected before measurement, the 

relevant components can be controlled at a small value as well. As a result, it is possible to 

think of the measurement of the three components as three separate measurement operations. 

The three components can be considered uncorrelated parameters. The correlation coefficient 

between components is assumed to be zero. The uncertainty model described above applies to 

the magnetic measurements. 
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3. Uncertainties of the magnitude and polarization direction by GUM method 

3.1. Uncertainty of the magnitude 

According to the propagation rule of uncertainty, the uncertainty of magnitude described in 

(11) calculated based on the measured components can be estimated. 

 , (14) 

where 

 . (15) 

Therefore: 

 . (16) 

It can be seen that the uncertainty of the 3D EMP calculation results varies with the change 

of components (the angle between the 3D EMP direction and the reality of the 3D rectangular 

coordinate system in measurement). Specially, when two of the components are 0, i.e., the total 

vector is parallel to one of the measured polarization directions, the uncertainty equals the 

uncertainty of this measured components, noticed that the other two components make no 

contribution to the measuring and calculation process. It becomes a 1D measurement problem; 

the estimated uncertainty based on (16) is consistent with the 1D condition. 

The uncertainty of the calculated 3D EMP can be estimated based on (16). However, in 

actual measurement, since the accurate values of the components are unknown, the measured 

results of each component can be used to replace its accurate value. As the measurement 

uncertainty is typically small, it has little impact on the evaluated results.  

To make it more convenient in the estimation of the uncertainty, an inequation is deduced 

based on (10) and (16), noticing that (16) contains the value of the vector under measurement, 

which is unknown before measurement.  

 . (17) 

By the same: 

 . (18) 

Write (17) and (18) into a uniform form, as shown in (23). 

 . (19) 

It can be seen from (19) that even though the uncertainty is correlated to the direction of the 

total vector compared with the established measuring coordinate, the uncertainty is always 

between the maximum and minimum measurement uncertainties of the three components. 

The relative uncertainty should have the same boundary, as shown in (20). 

 . (20) 

The uncertainties of the three components, which are known values that should be evaluated 

before measurement, can be used to quickly determine the uncertainty of the overall magnitude. 
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In engineering applications, the evaluation of uncertainty is typically not required to be 

extremely accurate, but it is typically important to acquire its upper bound in order to assess the 

measurement's accuracy. Therefore, it is acceptable to make an appropriate overestimation of 

uncertainty when estimating uncertainties. 

Moreover, due to the detector's typical performance being identical, the three components' 

uncertainties will typically not vary significantly in engineering applications. Commonly, for 

three component detectors of the same detector, they have the same measurement principle, 

adopt the same development process, use the same measurement settings during measurement, 

and face the same uncertainty influencing factors. Therefore, the three uncertainty components 

can be considered approximately the same. However, computational uncertainty and cognitive 

uncertainty need to be considered when evaluating uncertainty, such as the uncertainty 

introduced by the calculation process during the sensitivity calibration and its own jitter. These 

are the two main factors that contribute to the difference in uncertainties. The introduction of 

these uncertainties results in subtle differences in measurement uncertainty in different 

directions. Usually, the calculation process of calibration data and the system's own stability 

introduce an uncertainty of about 1~2% of the total magnitude respectively. Therefore, the 

overall difference of 3 uncertainties can be considered to not exceed 3%. Suppose u1≥u2≥u3, we 

have: 

 . (21) 

Based on the derivation of the upper and lower bounds shown in (24), the difference between 

the upper and lower bounds of this method can be controlled within 3%. In particular, (17) can 

be chosen to be equal when the measurement uncertainties in all three directions are the same. 

3.2. Uncertainty of the polarization direction 

The deviation of the polarization angle α is deduced first to evaluate the uncertainty of the 

polarization direction. By substituting (3) into (13), we have 

 . (22) 

Equation (22) can be expanded into the following form. 

 , (23) 

where 
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 , (24) 

 . (25) 

As δi can be served as small values compared with the magnitude |E|, f1 can be obtained by 

expanding it to 2-order. 

 . (26) 

By substituting (25) and (26) into (23), and omitting the 3-order and higher-order terms, we 

have 

 . (27) 

Therefore 

 . (28) 

The cosine value of polarization deviation α can be expanded into a polynomial form 

approximately, considering the angle deviation α is a small value. 

  (29) 

Therefore, based on (28) and (29), α can be calculated, as shown in (30): 

 . (30) 

By substituting (30) into (12), we have 

 , (31) 

where u(α) denotes the uncertainty of the polarization direction. 
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As mentioned above, the measured results of the components can be considered 

uncorrelated. Notice that δi and δj (i=1,2,3; j=1,2,3; i≠j) denote the expectation of δiδj, where δi 

and δj are the elements of δ shown in (4), (32) can be obtained based on (8): 

 . (32) 

By substituting (7) and (32) into (31), we have: 

 . (33) 

By substituting (16) into (33), we have: 

 . (34) 

The expression to determine the uncertainty of polarization direction is shown in (33) and 

(34). The uncertainty of the polarization angle can be determined using (34) directly if the 

amplitude uncertainty of the calculated 3D EMP has been estimated. 

The range of the uncertainty of angle can be directly derived, noticed that the boundary of 

the amplitude uncertainty has been determined in (17) and (18), as shown in (35). 

  (35) 

Suppose u1≥u2≥u3, the upper and lower boundaries of the polarization angle uncertainty can 

be determined, as shown in (36).  

  (36) 

The upper and lower boundary can be derived based on (35), as shown in (37) and (38), to 

make it easier to estimate the uncertainty. 

  (37) 

  (38) 
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will typically not vary significantly in engineering applications. As a result, there is typically 
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little variation between the top and lower ranges of the estimated uncertainty results. Based on 

(21) and the derivation of the upper and lower bounds shown in (36), we have: 

  (39) 

Therefore, the difference between the upper and lower bounds of this method can be 

controlled within 3%. 

This section analyzed the uncertainty propagation in the 3D EMP calculation results, which 

can be used to evaluate the uncertainty of the amplitude and polarization angle of the 3D EMP. 

Before obtaining the measurement results of the three components, a rough estimate based on 

(19) and (36) can be made on the assumption that the measurement uncertainty evaluation 

results of the three components are known, and the upper and lower limits of the evaluation 

results can be evaluated based on (19) and (36). This is critical for mastering total vector 

uncertainty prior to component measurement in order to guide the measurement process. After 

obtaining the measurement results for three components, the component value can be replaced 

by the actual measurement results using (16) and (33) to calculate a relatively accurate 

uncertainty. There is no requirement in the extrapolation process that the uncertainty of each 

component conform to a certain distribution, but the assumption is made that the measurement 

results of each component are uncorrelated values, which may limit the evaluation of 

uncertainty based on the measurement results of certain detectors. 

In general, the measurement is completed in a short period of time, at which time the 

measurement system's state and measurement settings can be regarded as the same, and the 

overall process's uncertainty can be viewed as the same. Indeed, due to the overlap of the 

measured signal and noise, the uncertainty generated by the system noise plays an important 

role when the amplitude (signal-to-noise ratio) is sufficiently low. The measurement amplitude 

will have an impact on the accuracy of each component measurement, and for pulse signal 

measurements in particular, the noise issue will be more pronounced at the start and end of the 

signal. However, we typically pay attention to the signal above half amplitude, particularly 

where peak-time attention is greatest. In this situation, the output signal-to-noise ratio is 

typically adequate, and the impact of noise relative to the overall measurement uncertainty can 

be disregarded. The uncertainty can be considered a time-independent value. In a strict sense, 

each component's measurement uncertainty counts as a time-dependent parameter. However, 

even if uncertainty is a time-related parameter, the conclusion of this article is equally 

applicable to 3D EMP uncertainty estimates, and the estimated results are time-relevant 

parameters as well. The simulated results apply to both the electric field (E) and magnetic field 

(H). 

4. MCM simulation 

The MCM [8] is used to simulate the uncertainty propagation in the calculation of magnitude 

and polarization direction. Since the purpose of the MCM simulation is to verify the uncertainty 

propagation in the 3D EMP calculation process deduced in Section III, this section mainly 

compares the results of the data in several conditions and does not cover the entire range of 

parameters. The simulated results apply to both the electric field (E) and magnetic field (H). 

4.1. The simulation model 

In the MCM simulation model, a spherical coordinate and a rectangular coordinate are 

established to describe the magnitude under measurement respectively. In the spherical 
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coordinate, the process is described by the magnitude |E| and polarization parameters θ and φ; 

in the rectangular coordinate, the process is described by the three orthogonal components E1, 

E2, and E3. The definition of the two groups of parameters (|E|, θ, φ) and (E1, E2, E3) are shown 

in Fig. 1. 

 

Fig.1. The spherical coordinate and the rectangular coordinate 

To simplify the simulation, the magnitude of the process under measurement is normalized 

to 1. (40) shows the calculation formula for the three components. 

  (40) 

where θ ranges from 0 to 2π, and φ ranges from 0 to π. 

The measured results of components are represented by the sum of Ei (i=1,2,3) and the 

measuring errors δi (i=1,2,3)  based on (40). The measuring errors are obtained by multiplying 

the uncertainty ui (i=1,2,3) with the random numbers generated by the computer. This method 

can ensure that the statistical uncertainty of the components in the simulation is equal to the 

measuring uncertainty ui (i=1,2,3). 

Therefore, knowing the parameters θ, φ, u1, u2, and u3, all the measured components can be 

obtained. 

  (41) 

where rand(0,1) denotes the random values generated in the simulation. 

The measured magnitudes are calculated by (42), and the angles of the polarization directions 

between the measured and the given vector are calculated by (43). 
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  (43) 

In the MCM simulation, there are 5 variable parameters in the simulation: θ, φ, u1, u2, u3. As 

it is difficult to completely cover all cases, some variables are fixed, and some typical values 

are selected to verify the estimation. Firstly, the values of θ and φ are set as π/4 while u1, u2 and 

u3 change from 0 to 0.2. Then, u1, u2 and u3 are set to 0.02 while θ and φ change to cover all the 

polarization directions. The reason for setting the parameters that determine the polarization 

angle θ and φ to π/4 is to take the intermediate value of the angle between the three components 

of the distance to ensure that the simulation does not degenerate into a two-dimensional or even 

one-dimensional situation. And the reason for setting a fixed measurement uncertainty of 0.02 

is that 2% represents a typical uncertainty value for a high-quality sensor considering the 

engineering application. 

The times of repetition are 106 in the MCM calculation in order to provide a coverage interval 

of 95% [22]. The simulated uncertainties are obtained by the RMS calculation of statistical 

magnitude calculated by (42) and angles calculated by (43).  

4.2. Comparison of 2 different distributions 

The distributions of factors that contribute to uncertainty are not necessary for the derivation 

of uncertainty. However, the majority of causes of uncertainty (roughly) follow a uniform or 

normal distribution in the evaluation of measurement uncertainty. As a consequence, the 

simulation primarily compares the simulation's results in the context of two different conditions, 

namely, uniform distribution and normal distribution.  

The polarization direction is fixed first by setting θ and φ as π/4. Based on (40), E1, E2 and 

E3 are set as 1/2, 1/2 and 1/sqrt(2) respectively. The magnitude and polarization direction 

uncertainties obtained by MCM, where the components follow a uniform distribution and a 

normal distribution, respectively, are shown in Fig. 2 and Fig. 3. The three components' 

measurement uncertainties vary from 0 to 0.2 in this simulation. The green points in Fig. 2 and 

Fig. 3 denote the simulated results based on the uniform distribution data of the three 

components, and the red points in Fig. 2 and Fig. 3 denote the simulated results based on the 

normal distribution data of the three components. 
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Fig. 2. Comparison of the uncertainties of the magnitude with the unform distribution and the normal distribution 

(θ=φ=π/4): (a) u3=0.05; (b) u3=0.1; (c) u3=0.15; (d) u3=0.2. 

 

 

Fig. 3. Comparison of the uncertainties of the polarization direction with the unform distribution and the normal 

distribution (θ=φ=π/4): (a) u3=0.05; (b) u3=0.1; (c) u3=0.15; (d) u3=0.2. 

The maximum (relative) differences of the uncertainties between the 2 distributions in 

Fig. 2(a), Fig. 2(b), Fig. 2(c), Fig. 2(d), Fig. 3(a), Fig. 3(b), Fig. 3(c) and Fig. 3(d) are 0.0035 

(2.3%), 0.0033 (2.2%), 0.0035 (2.1%), 0.0043 (2.3%), 0.0082 (5.6%), 0.0073 (4.4%), 0.0059 

(3.1%) and 0.0053 (2.4%), respectively, where the relative differences denote the ratio of the 

differences of the 2 uncertainties and the uncertainties of uniform distribution at different u1, u2 

and u3. The results of the MCM simulation, which were based on data from two different 

distributions, can be seen to be in good agreement with one another at various levels of 

magnitude and polarization uncertainty. 

Moreover, the uncertainties of the three components are set to a fixed value of 0.02. The 

angle parameters θ and φ range from 0 to 2π and 0 to π respectively, which can cover all the 

polarization direction. In the simulation, a θ value is taken for each interval of π/25 and a φ 

value for each interval of π/50. A total of 2500 sets of data are numbered for different groups 
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of values of (θ, φ). Each number represents a fixed polarization angle according to the 2500 

groups of values (θ, φ), and each group of values corresponds to an amplitude uncertainty and 

an angular uncertainty. Fig. 4(a) and Fig. 4(b) show the uncertainties of the magnitude and 

polarization directions obtained by MCM simulation based on the data of the three components 

with normal distribution and uniform distribution respectively. The results obtained by different 

distributions can be seen to be in good agreement with each other. 

 

 

Fig. 4. Uncertainties obtained by MCM method (u1= u2= u3=0.2): (a) uncertainty of the magnitude; (b) 

uncertainty of the polarization direction. 

Although the simulation does not cover all situations and all distribution types, the results 

show that the uncertainty obtained under the two distributions is close to each other. There are 

no requirements for what distribution the uncertainty of the component should follow in the 

uncertainty derivation in Section III, which is also consistent with the simulation result. 

4.3. Verification of the estimation formulas 

Considering the most common normal distribution model, in which all components in the 

simulation follow a normal distribution and different components are not correlated, noticed 

that different distributions have no impact on simulation results. The simulated results are used 

to verify the estimation formulas obtained by the GUM method. The simulated results apply to 

both the electric field (E) and magnetic field (H). 
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The polarization direction is first fixed by setting θ and φ as π/4. Based on (40), E1, E2 and 

E3 are set as 1/2, 1/2 and 1/sqrt(2) respectively. Fig. 5 and Fig. 6 show the uncertainties in 

magnitude and polarization direction obtained by MCM simulation and GUM estimation. The 

measurement uncertainties of the three components range from 0 to 0.2. The green points in 

Fig. 5 and Fig. 6 denote the estimated results calculated by (16) and (33) respectively, and the 

red points in Fig. 5 and Fig. 6 denote the results obtained by the MCM method. The maximum 

(relative) differences of the uncertainties between the two methods in Fig. 5(a), Fig. 5(b), 

Fig. 5(c), Fig. 5(d), Fig. 6(a), Fig. 6(b), Fig. 6(c) and Fig. 6(d) are 0.0026 (2.4%), 0.0034 

(2.2%), 0.0036 (2.1%), 0.0044 (2.4%), 0.0083 (5.3%), 0.007 (4.0%), 0.0059 (3.0%) and 0.0053 

(2.3%) respectively, where the relative differences denote the ratio of the differences of the 2 

uncertainties and the uncertainties of the GUM method at different u1, u2 and u3. It can be seen 

that the results obtained by the GUM method are in good agreement with those obtained by 

MCM simulation at different uncertainty values of magnitude and polarization direction.  

 

 

Fig. 5. Comparison of the uncertainties of the magnitude obtained by the GUM method and the MCM method 

(θ=φ=π/4): (a) u3=0.05; (b) u3=0.1; (c) u3=0.15; (d) u3=0.2. 
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Fig. 6. Comparison of the uncertainties of the polarization direction obtained by the GUM method and the MCM 

method (θ=φ=π/4): (a) u3=0.05; (b) u3=0.1; (c) u3=0.15; (d) u3=0.2. 

The uncertainties at different polarizations by adjusting parameters θ and φ by setting fixed 

uncertainties for the three components have been simulated, as shown in Fig.4. The angles range 

from 0 to 2π and 0 to π respectively, which can cover all the polarization directions. As the 

uncertainties of all the directions are the same, the calculated uncertainties of the magnitude 

and polarizations of the total vector are 0.02 and 0.0282 respectively. The results shown in Fig.4 

obtained by the MCM method are in good agreement with the calculated results. 

The uncertainty obtained by the GUM method in Section III is verified by the MCM 

simulation based on simulation and comparison. The calculations are straightforward and 

simple, which can provide a guidance in engineering applications. 

5. Conclusions 

In this paper, the uncertainty propagation in the calculation of 3D EMP measurement is 

studied, including the uncertainty of magnitude and polarization angle calculation. The results 

show that the uncertainty of magnitude is no more than the maximum of the uncertainty of the 

three components, and the uncertainty of angle is no more than sqrt(2) times of the maximum 

uncertainty of the three components divided by the magnitude of the measured magnitude. The 

conclusion can be useful for the uncertainty evaluation of 3D process measurement. All the 

relationships and conclusions arising from them given in the article concern the determination 

of the measurement uncertainty of both the electrical component (E) and the magnetic 

component (H) of the electromagnetic field strength. The conclusions obtained in this paper are 

based on the non-correlation hypothesis of the three components. It will be limited to the 

application of the correlation condition of the three components, which needs to be studied 

further. 
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