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Abstract 

As the polarization direction is unknown in free-space three-dimensional (3D) electromagnetic pulse (EMP) 

measurement, the components in three directions are usually measured first, and then the total vector is 

calculated. The waveform (magnitude) and polarization direction define the 3D process. Because of the 

uncertainty produced in the component measurement, there is also uncertainty in the calculated 3D process. This 

paper investigates the propagation of uncertainty during the total vector calculation process. The magnitude and 

polarization angle uncertainty propagation formulas are derived through analysis. The results show that the 

uncertainty of the calculated magnitude is less than the maximal measurement uncertainty of the three 

components, and the uncertainty of the polarization angle is less than sqrt(2) times the maximal uncertainty of 

the three components divided by the magnitude of the measured field. Finally, a Monte-Carlo (MC) simulation is 

run to validate the results of the analysis. The simulation results agree well with the analysis results. 

Keywords: uncertainty, three-dimensional, measurement, electromagnetic pulse. 

1. Introduction 

Measurement is an important method for obtaining the parameters of the electromagnetic 

pulse (EMP) in the field of electromagnetic compatibility and high-power electromagnetism. 

In practice, measuring free-space three-dimensional (3D) EMP is of great interest. The 

magnitude and polarization in spherical coordinates or three components in rectangular 

coordinates are commonly used to characterize the 3D EMP. The two groups of parameters 

characterized by spherical coordinates and rectangular coordinates can be converted to each 

other. In practice, the EMP is measured by first measuring the one-dimensional (1D) 

components of three orthogonal directions, and then calculating the magnitude and 

polarization direction of the 3D process. The components can be measured simultaneously by 

different kinds of 3D detectors, such as the 3D pulsed electrical detectors [1-3] and the 3D 

optical passive electric field sensors [4-6]. 

In measurement, we are concerned not only with the measured results but also with 

measurement uncertainty. In fact, the component measurement method is equivalent to 

measuring the components simultaneously with three independent 1D detectors with 

measurement uncertainty. The measurement uncertainty of each independent component is 

commonly evaluated using the Guide to the Expression of Uncertainty in Measurement 

(GUM) [7] or the Monte-Carlo method (MCM) [8, 9]. More specifically, there have been 

numerous studies on the uncertainty evaluation focusing on the sensor-based measurement of 

EMP [10-13]. Regarding the engineering application, the measurement uncertainty of the 

EMP measurement can be roughly divided into three sources: the uncertainty of the 

measurement system itself, the uncertainty introduced in the calibration [14], and the 
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uncertainty introduced by the measurement implementation [15]. Taking engineering 

applications into consideration, we prefer to use the GUM method to estimate the 

measurement due to the constantly changing state and environment involved in measurement,. 

In most cases, Type A uncertainty statistics are used to determine the measurement system's 

uncertainty itself. The uncertainty in the calibration and measurement process is usually 

determined by the GUM method which combines Type A uncertainty with that of Type B. 

For the calibration of pulsed electric field sensors based on the standard field method, the 

calibration uncertainty can be obtained through hybrid methods such as calculation and 

analysis [16, 17]. The uncertainty propagation process for the fitting method of calibration 

data during the fitting can be estimated as well [18]. Factors such as measurement position 

polarization direction mismatch are taken into account for the measurement procedure, and a 

relative reasonable analysis result can also be obtained [19]. The measurement uncertainty of 

a 1D measurement system can thus be obtained based on the existing methods and processes.  

However, a single 1D component’s uncertainty cannot directly represent the uncertainty of 

the magnitude and polarization direction of the 3D process. The uncertainties of the 

components are related to the uncertainties of the calculated magnitude and polarization 

directions. It is necessary to study the uncertainty propagation in the calculation process and 

obtain an estimation formula corresponding to the uncertainties of components in order to 

evaluate the 3D EMP calculation. This paper investigates the uncertainty propagation of the 

3D EMP during the calculation process based on the measured 1D components. The paper is 

organised as follows: Section 2 describes the uncertainty modelling; Section 3 analyses the 

uncertainty of the magnitude and polarization direction by the GUM method; Section 4 

verifies the analysis conclusion by the MCM method; and Section 5 summarises this article. 

2. Uncertainty modelling 

An arbitrary electromagnetic process under measurement can be divided into three 

orthogonal components. The electric field under measurement is defined as (1). The results 

apply to the magnetic measurements. 

 
 
, (1) 

where E denotes the process under measurement, and E1, E2 and E3 denote the three 

orthogonal components respectively.  

It should be noted that E1, E2, and E3 are all time-dependent parameters: E1(t), E2(t), and 

E3(t). As the measurement results are represented by time discrete data, we usually calculate 

the measurement results at different discrete times and then form the waveform of the 3D 

EMP based on the discrete values. As a result, the measured electromagnetic transient can be 

reduced to a vector for a fixed time instant t0. The uncertainties of the three components 

obtained through measurement can then be represented by three values. All of the parameters 

used in this paper are assumed at a fixed time t0, and the conclusions are valid at any time t. 

In the measurement, the components are measured by a 3D probe, which can respond to 

the electromagnetic process in three different directions at the same time. Obviously, 

measurement uncertainty exists for each measured component. Similarly, for a fixed time t0, 

the measured results can be described as (2): 

 , (2) 

where Em denotes the measured process, Em1, Em2 and Em3 denote the measured components, 

respectively. 
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Considering the measurement uncertainty in every component, describe the measured 

results as (3): 

 , (3) 

 , (4) 

where δ1, δ2 and δ3 denote the measuring errors of the components E1, E2 and E3 respectively. 

 

For a function Y= f(X1, X2, …, Xn), y is the evaluated value of Y, x1, x2, ..., xn is the 

evaluated value of X1, X2, ..., Xn, and all the components are uncorrelated. The combined 

standard uncertainty of measurement is given by the equation of Guide 10.b [20]: 

 . (5) 

Notice that the field E1, E2, E3 is the true value of the three components, the uncertainties 

of components Em1, Em2 and Em3 equal the uncertainties of measuring errors δ1, δ2 and δ3 

respectively based on (3) and (4). Define the uncertainties of components Em1, Em2 and Em3 as 

u1, u2 and u3, as shown in (6), which can be evaluated before measurement: 

  (6) 

Based on the definition of uncertainty, the uncertainties can be calculated by (7): 

 . (7) 

The uncertainty of an EMP measurement system can be composed of Type A uncertainty 

and Type B uncertainty. This includes both randomness and systematic uncertainty 

components. The expected value can be considered 0 for the random components. The 

deviation of the systematic components, however, is usually a fixed value. The uncertainty 

components related to the systematic deviation of an EMP measurement system mainly 

include the deviation of the calibration coefficient and the sensor jitter caused by temperature 

change. The calibration instruments such as oscilloscopes and attenuators used for the 

calibration of coefficients are usually calibrated in a metrology laboratory, therefore the 

systematic error introduced by calibration is usually small. On the other hand, for the 

calibration process with the standard field method, the standard deviation generated in the 

calibration device is corrected according to the preliminary analysis results, and the 

uncertainty of the oscilloscope measurement and other processes is reduced as much as 

possible by the method of multiple calibration. Sensor jitter due to temperature changes is not 

strictly a completely systematic deviation component, but it can be approximated as a fixed 

deviation value compared to a very short measurement process, and similar deviations will be 

exhibited by similar sensors. We have also minimized it by means of sensor thermal 

insulation and coefficient compensation, which can technically be controlled within 1%. After 

considering the elimination of the components of systemic uncertainty above, it can be 

approximated that the expected value of the measurement uncertainty δi approaches 0: 

 . (8) 

The measured results that are characterized by rectangular coordinates commonly need to 

be turned into spherical coordinates that contain magnitude and polarization direction. The 

uncertainties of magnitudes can be expressed as root-mean-square (RMS) values as well, as 

shown in (9): 

 , (9) 



Y. Shi et al.: UNCERTAINTY ANALYSIS FOR FREE-SPACE THREE-DIMENSIONAL MEASUREMENT… 

 

where |E| and |Em| denote the magnitude of the truth-value and the calculated results based on 

measurement respectively: 

 , (10) 

 . (11) 

Define a parameter α to denote the angle of the polarization direction between |Em| and |E|. 

Considering that the value of α for a completely accurate measurement should be 0, the 

uncertainty of α is expressed as in (12): 

 , (12) 

where α is calculated by (13). 

 . (13) 

With the representation of uncertainty in magnitude and polarization, the uncertainty 

propagation in the calculation can be analysed.  

For the same type of measurement system, as mentioned above, there must be a correlation 

between any two 1D sensors due to the influence of many factors, such as the uncertainty 

components caused by the systematic errors. However, in the analysis below, the 

measurements of the three components of the sensor are considered uncorrelated. This is true 

based on the assumption that the uncertainty components that have a systemic impact on the 

measurement (e.g., the systematic error of the calibration coefficients) and the factors that 

cause the interference of the three component measurements (e.g., antenna mutual coupling) 

have been fully considered and deducted as much as possible. The mutual coupling and 

interference amongst sensors are often taken into account in the sensor design. The effect of 

mutual coupling between antennas is related to the frequency of the signal being measured. 

As the frequency of the measured electric field increases, its wavelength is comparable to that 

of the three-dimensional sensor, and the coupling will increase greatly. This article focuses on 

the measurement of electromagnetic pulses (lightning electromagnetic pulses, high-altitude 

electromagnetic pulses, and electrostatic discharges) which typically cover a frequency of less 

than 500 MHz. Generally speaking, the mutual coupling between antennas can be controlled 

within a small amount of field signals below 1 GHz [21]. In the case of a large impact on 

mutual coupling, the effect of mutual coupling between antennas will be corrected through 

calibration [21]. After design considerations and calibration corrections, it is possible to 

control the antenna mutual coupling at 2% (34 dB). If we introduce this in our formulation for 

the mixed derivative terms, such terms result in smaller than 2% of the magnitude of the field 

and can be disregarded at a first approximation. Moreover, if the systematic deviations such 

as the sensitivity coefficients mentioned above are fully considered and corrected before 

measurement, the relevant components can be controlled at a small value as well. As a result, 

it is possible to think of the measurement of the three components as three separate 

measurement operations. The three components can be considered uncorrelated parameters. 

The correlation coefficient between components is assumed to be zero. The uncertainty model 

described above applies to the magnetic measurements. 
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3. Uncertainties of the magnitude and polarization direction by the GUM method 

3.1. Uncertainty of the magnitude 

According to the propagation rule of uncertainty, the uncertainty of magnitude described in 

(11) calculated based on the measured components can be estimated. 

 , (14) 

where 

 . (15) 

Therefore: 

 . (16) 

It can be seen that the uncertainty of the 3D EMP calculation results varies with the change 

of components (the angle between the 3D EMP direction and the reality of the 3D rectangular 

coordinate system in measurement). Specially, when two of the components are 0, i.e., the 

total vector is parallel to one of the measured polarization directions, the uncertainty equals 

the uncertainty of this measured components, noticing that the other two components make no 

contribution to the measuring and calculation process. It becomes a 1D measurement 

problem; the estimated uncertainty based on (16) is consistent with the 1D condition. 

The uncertainty of the calculated 3D EMP can be estimated based on (16). However, in 

actual measurement, since the accurate values of the components are unknown, the measured 

results of each component can be used to replace its accurate value. As the measurement 

uncertainty is typically small, it has little impact on the evaluated results.  

To make it more convenient in the estimation of the uncertainty, an inequation is deduced 

based on (10) and (16), noticing that (16) contains the value of the vector under measurement, 

which is unknown before measurement.  

 . (17) 

By the same: 

 . (18) 

Write (17) and (18) into a uniform form, as shown in (23). 

 . (19) 

It can be seen from (19) that even though the uncertainty is correlated to the direction of 

the total vector compared with the established measuring coordinate, the uncertainty is always 

between the maximum and minimum measurement uncertainties of the three components. 

The relative uncertainty should have the same boundary, as shown in (20). 

 . (20) 

The uncertainties of the three components, which are known values that should be 

evaluated before the measurement, can be used to quickly determine the uncertainty of the 

overall magnitude. In engineering applications, the evaluation of uncertainty is typically not 

required to be extremely accurate, but it is typically important to acquire its upper bound in 
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order to assess the measurement's accuracy. Therefore, it is acceptable to make an appropriate 

overestimation of uncertainty when estimating uncertainties. 

Moreover, due to the detector's typical performance being identical, the three components' 

uncertainties will typically not vary significantly in engineering applications. Commonly, for 

three-component detectors of the same detector, they have the same measurement principle, 

adopt the same development process, use the same measurement settings during the 

measurement, and face the same uncertainty influencing factors. Therefore, the three 

uncertainty components can be considered approximately the same. However, computational 

uncertainty and cognitive uncertainty need to be considered when evaluating uncertainty, such 

as, for instance, the uncertainty introduced by the calculation process during the sensitivity 

calibration and its own jitter. These are the two main factors that contribute to the difference 

in uncertainties. The introduction of these uncertainties results in subtle differences in 

measurement uncertainty in different directions. Usually, the calculation process of 

calibration data and the system's own stability introduce an uncertainty of about 1~2% of the 

total magnitude respectively. Therefore, the overall difference of 3 uncertainties can be 

considered to not exceed 3%. Suppose u1≥u2≥u3, we obtain: 

 . (21) 

Based on the derivation of the upper and lower bounds shown in (24), the difference 

between the upper and lower bounds of this method can be controlled within 3%. In 

particular, (17) can be chosen to be equal when the measurement uncertainties in all three 

directions are the same. 

3.2. Uncertainty of the polarization direction 

The deviation of the polarization angle α is deduced first to evaluate the uncertainty of the 

polarization direction. By substituting (3) into (13), we obtain: 

  (22) 

Equation (22) can be expanded into the following form: 

 , (23) 

where 

 , (24) 

 

 . . (25) 

As δi can be served as small values compared with the magnitude |E|, f1 can be obtained by 

expanding it to 2ndorder. 

 . (26) 
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By substituting (25) and (26) into (23), and omitting the 3-order and higher-order terms, 

we obtain: 

  . (27) 

Therefore, 

  . (28) 

The cosine value of polarization deviation α can be expanded into a polynomial form 

approximately, considering the angle deviation α is a small value: 

 . (29) 

Therefore, based on (28) and (29), α can be calculated, as shown in (30): 

 . (30) 

By substituting (30) into (12), we obtain: 

  

, (31) 

where u(α) denotes the uncertainty of the polarization direction. 

 

As mentioned above, the measured results of the components can be considered 

uncorrelated. Notice that δi and δj (i=1,2,3; j=1,2,3; i≠j) denote the expectation of δiδj, where 

δi and δj are the elements of δ shown in (4), (32) can be obtained based on (8): 

 . (32) 

By substituting (7) and (32) into (31), we obtain: 

 

.  (33) 

By substituting (16) into (33), we obtain: 

  . (34) 

The expression to determine the uncertainty of polarization direction is shown in (33) and 

(34). The uncertainty of the polarization angle can be determined using (34) directly if the 

amplitude uncertainty of the calculated 3D EMP has been estimated. 

The range of the uncertainty of the angle can be directly derived based on the boundary of 

the uncertainty of  amplitude shown in (17) and (18), as presented in (35). 

  . (35) 
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Suppose u1≥u2≥u3, the upper and lower boundaries of the polarization angle uncertainty 

can be determined, as shown in (36):  

 . (36) 

The upper and lower boundary can be derived based on (35), as shown in (37) and (38), to 

make it easier to estimate the uncertainty: 

  , (37) 

  . (38) 

Due to the detector's typical performance being identical, the three components' 

uncertainties will typically not vary significantly in engineering applications. As a result, 

there is typically little variation between the top and lower ranges of the estimated uncertainty 

results. Based on (21) and the derivation of the upper and lower bounds shown in (36), we 

obtain: 

 . (39) 

Therefore, the difference between the upper and lower bounds of this method can be 

controlled within 3%. 

This section analysed the uncertainty propagation in the 3D EMP calculation results, which 

can be used to evaluate the uncertainty of the amplitude and polarization angle of the 3D 

EMP. Before obtaining the measurement results of the three components, a rough estimate 

based on (19) and (36) can be made on the assumption that the measurement uncertainty 

evaluation results of the three components are known, and the upper and lower limits of the 

evaluation results can be obtained based on (19) and (36). This is critical for mastering total 

vector uncertainty prior to component measurement in order to guide the measurement 

process. After obtaining the measurement results for the three components, the component 

value can be replaced by the actual measurement results using (16) and (33) to calculate a 

relatively accurate uncertainty. There is no requirement in the extrapolation process that the 

uncertainty of each component conform to a certain distribution, but the assumption is made 

that the measurement results of each component are uncorrelated values, which may limit the 

evaluation of uncertainty based on the measurement results of certain detectors. 

In general, the measurement is completed in a short period of time, when the measurement 

system's state and measurement settings can be regarded as the same, and the overall process's 

uncertainty can be viewed as the same. Indeed, due to the overlap of the measured signal and 

noise, the uncertainty generated by the system noise plays an important role when the 

amplitude (signal-to-noise ratio) is sufficiently low. The measurement amplitude will have an 

impact on the accuracy of each component measurement, and for pulse signal measurements 

in particular, the noise issue will be more pronounced at the start and end of the signal. 

However, we typically pay attention to the signal above half amplitude, particularly to the 

peak. In this situation, the output signal-to-noise ratio is typically adequate, and the impact of 

noise relative to the overall measurement uncertainty can be disregarded. The uncertainty can 

be considered a time-independent value. In a strict sense, each component's measurement 

uncertainty counts as a time-dependent parameter. However, even if uncertainty is a time-

related parameter, the conclusion of this article is equally applicable to 3D EMP uncertainty 

estimates, and the estimated results are time-relevant parameters as well. The simulated 

results apply to both the electric field (E) and magnetic field (H). 
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4. MCM simulation 

The MCM [8] is used to simulate the uncertainty propagation in the calculation of 

magnitude and polarization direction. Since the purpose of the MCM simulation is to verify 

the uncertainty propagation in the 3D EMP calculation process deduced in Section 3, this 

section does not cover the entire range of parameters. The simulated results apply to both the 

electric field (E) and magnetic field (H). 

4.1. The simulation model 

In the MCM simulation model, a spherical coordinate and a rectangular coordinate are 

established to describe the magnitude under measurement respectively. In the spherical 

coordinate, the process is described by the magnitude |E| and polarization parameters θ and φ; 

in the rectangular coordinate, the process is described by the three orthogonal components E1, 

E2, and E3. The definition of the two groups of parameters (|E|, θ, φ) and (E1, E2, E3) is shown 

in Fig. 1. 

 

Fig. 1. The spherical coordinate and the rectangular coordinate. 

To simplify the simulation, the magnitude of the process under measurement is normalized 

to 1. (40) shows the calculation formula for the three components: 

 , (40) 

where θ ranges from 0 to 2π, and φ ranges from 0 to π. 

 

The measured results of components are represented by the sum of Ei (i=1,2,3) and the 

measuring errors δi (i=1,2,3) based on (40). The measuring errors are obtained by multiplying 

the uncertainty ui (i=1,2,3) with the random numbers generated by the computer. This method 

can ensure that the statistical uncertainty of the components in the simulation is equal to the 

measuring uncertainty ui (i=1,2,3). 

  

E

E1

E2

E3

φ

θ



Y. Shi et al.: UNCERTAINTY ANALYSIS FOR FREE-SPACE THREE-DIMENSIONAL MEASUREMENT… 

 

Therefore, knowing the parameters θ, φ, u1, u2, and u3, all the measured components can be 

obtained: 

 , (41) 

where rand(0,1) denotes the random values generated in the simulation. 

The measured magnitudes are calculated by (42), and the angles of the polarization 

directions between the measured and the given vector are calculated by (43). 

 , (42) 

 . (43) 

In the MCM simulation, there are 5 variable parameters in the simulation: θ, φ, u1, u2, u3. 

As it is difficult to completely cover all the cases, some variables are fixed, and some typical 

values are selected to verify the estimation. Firstly, the values of θ and φ are set as π/4 while 

u1, u2 and u3 change from 0 to 0.2. Then, u1, u2 and u3 are set to 0.02 while θ and φ change to 

cover all the polarization directions. The reason for setting the parameters that determine the 

polarization angle θ and φ to π/4 is to take the intermediate value of the angle between the 

three components of the distance to ensure that the simulation does not degenerate into a two-

dimensional or even one-dimensional situation. And the reason for setting a fixed 

measurement uncertainty of 0.02 is that 2% represents a typical uncertainty value for a high-

quality sensor considering the engineering application. 

The times of repetition are 106 in the MCM calculation in order to provide a coverage 

interval of 95% [22]. The simulated uncertainties are obtained by the RMS calculation of 

statistical magnitude calculated by (42) and angles calculated by (43).  

4.2. Comparison of two different distributions 

The distributions of factors that contribute to uncertainty are not necessary for the 

derivation of uncertainty. However, the majority of cases of uncertainty (roughly) follow a 

uniform or normal distribution in the evaluation of measurement uncertainty. As a 

consequence, the simulation primarily compares the simulation's results in the context of two 

different conditions, namely, uniform distribution and normal distribution.  

The polarization direction is fixed first by setting θ and φ as π/4. Based on (40), E1, E2 and 

E3 are set as 1/2, 1/2 and 1/sqrt(2) respectively. The magnitude and polarization direction 

uncertainties obtained by MCM, where the components follow a uniform distribution and a 

normal distribution, respectively, are shown in Fig. 2 and Fig. 3. The three components' 

measurement uncertainties vary from 0 to 0.2 in this simulation. The green points in Fig. 2 

and Fig. 3 denote the simulated results based on the uniform distribution data of the three 

components, and the red points in Fig. 2 and Fig. 3 denote the simulated results based on the 

normal distribution data of the three components. 

2 2 2

m m1 m2 m3E E E E= + +
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Fig. 2. Comparison of the uncertainties of magnitude with the uniform distribution and normal distribution 

(θ=φ=π/4): (a) u3=0.05; (b) u3=0.1; (c) u3=0.15; (d) u3=0.2. 

 

 

Fig. 3. Comparison of uncertainties of the polarization direction with the uniform distribution and normal 

distribution (θ=φ=π/4): (a) u3=0.05; (b) u3=0.1; (c) u3=0.15; (d) u3=0.2. 
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The maximum (relative) differences of the uncertainties between the two distributions in 

Fig. 2(a), Fig. 2(b), Fig. 2(c), Fig. 2(d), Fig. 3(a), Fig. 3(b), Fig. 3(c) and Fig. 3(d) are 0.0035 

(2.3%), 0.0033 (2.2%), 0.0035 (2.1%), 0.0043 (2.3%), 0.0082 (5.6%), 0.0073 (4.4%), 0.0059 

(3.1%) and 0.0053 (2.4%), respectively, where the relative differences denote the ratio of the 

differences of the two uncertainties and the uncertainties of the uniform distribution at 

different u1, u2 and u3. The results of the MCM simulation, which were based on data from 

two different distributions, can be seen to be in good agreement with one another at various 

levels of magnitude and polarization uncertainty. 

Moreover, the uncertainties of the three components are set to a fixed value of 0.02. The 

angle parameters θ and φ range from 0 to 2π and 0 to π respectively, which can cover all the 

polarization direction. In the simulation, a θ value is taken for each interval of π/25 and a φ 

value for each interval of π/50. A total of 2500 sets of data are numbered for different groups 

of values of (θ, φ). Each number represents a fixed polarization angle according to the 2500 

groups of values (θ, φ), and each group of values corresponds to an amplitude uncertainty and 

an angular uncertainty. Fig. 4(a) and Fig. 4(b) show the uncertainties of the magnitude and 

polarization directions obtained by MCM simulation based on the data of the three 

components with the normal distribution and uniform distribution respectively. The results 

obtained by different distributions can be seen to be in good agreement with each other. 

 

 

Fig. 4. Uncertainties obtained by MCM method (u1= u2= u3=0.2): (a) uncertainty of the magnitude; (b) 

uncertainty of the polarization direction. 
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Although the simulation does not cover all situations and all distribution types, the results 

show that the uncertainties of uniform distribution and normal distribution are close to each 

other. There are no requirements as to what distribution the uncertainty of the component 

should follow in the uncertainty derivation in Section 3, which is also consistent with the 

simulation results. 

4.3. Verification of the estimation formulas 

Considering the most common normal distribution model, in which all components in the 

simulation follow a normal distribution and different components are not correlated. The 

simulated results are used to verify the estimation formulas obtained by the GUM method. 

The simulated results apply to both the electric field (E) and magnetic field (H). 

The polarization direction is first fixed by setting θ and φ as π/4. Based on (40), E1, E2 and 

E3 are set as 1/2, 1/2 and 1/sqrt(2) respectively. Fig. 5 and Fig. 6 show the uncertainties in 

magnitude and polarization direction obtained by the MCM simulation and GUM estimation. 

The measurement uncertainties of the three components range from 0 to 0.2. The green points 

in Fig. 5 and Fig. 6 denote the estimated results calculated by (16) and (33) respectively, and 

the red points in Fig. 5 and Fig. 6 denote the results obtained by the MCM method. The 

maximum (relative) differences of the uncertainties between the two methods in Fig. 5(a), 

Fig. 5(b), Fig. 5(c), Fig. 5(d), Fig. 6(a), Fig. 6(b), Fig. 6(c) and Fig. 6(d) are 0.0026 (2.4%), 

0.0034 (2.2%), 0.0036 (2.1%), 0.0044 (2.4%), 0.0083 (5.3%), 0.007 (4.0%), 0.0059 (3.0%) 

and 0.0053 (2.3%) respectively, where the relative differences denote the ratio of the 

differences of the two uncertainties and the uncertainties of the GUM method at different u1, 

u2 and u3. It can be seen that the results obtained by the GUM method are in good agreement 

with those obtained by the MCM simulation for different uncertainty values of magnitude and 

polarization direction.  

 

 

Fig. 5. Comparison of the uncertainties of the magnitude obtained by the GUM method and the MCM method 

(θ=φ=π/4): (a) u3=0.05; (b) u3=0.1; (c) u3=0.15; (d) u3=0.2. 
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Fig. 6. Comparison of the uncertainties of the polarization direction obtained by the GUM method and the MCM 

method (θ=φ=π/4): (a) u3=0.05; (b) u3=0.1; (c) u3=0.15; (d) u3=0.2. 

The uncertainties for different polarizations obtained by adjusting parameters θ and φ by 

setting fixed uncertainties for the three components have been simulated, as shown in Fig. 4. 

The angles ranged from 0 to 2π and 0 to π respectively, which can cover all the polarization 

directions. As the uncertainties of all the directions are the same, the calculated uncertainties 

of the magnitude and polarizations of the total vector are 0.02 and 0.0282 respectively. The 

results shown in Fig. 4 obtained by the MCM method are in good agreement with the 

calculated results. 

The uncertainty obtained by the GUM method in Section 3 is verified by the MCM 

simulation based on simulation and comparison. The calculations are straightforward and 

simple, which can provide a guidance in engineering applications. 

5. Conclusions 

In this paper, the uncertainty propagation in the calculation of 3D EMP measurement is 

studied, including the uncertainty of magnitude and polarization angle calculation. The results 

show that the uncertainty of magnitude is not greater than the maximum of the uncertainty of 

the three components, and the uncertainty of the angle is not greater than sqrt(2) times of the 

maximum uncertainty of the three components divided by the magnitude of the measured 

magnitude. The conclusion can be useful for the uncertainty evaluation of the 3D 

measurement process. All the relationships and conclusions arising from them given in the 

article concern the determination of the measurement uncertainty of both the electrical 

component (E) and the magnetic component (H) of the electromagnetic field strength. The 

conclusions obtained in this paper are based on the non-correlation hypothesis of the three 

components. The method proposed in this article is not applicable to the situations that three 

field components are correlated which needs to be studied further. 
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