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Abstract 

In this work, the electromotive force (EMF) near a permanent magnet heating cylinder was determined using a 

practical test bench. The aim is to elaborate three-dimensional analytical calculation capable of predicting 

accurately the same electromagnetic quantities by calculating the induced EMF in the presence of an inductive 

sensor. The analytical approach is obtained from developing mathematical integrals using the Coulombian 

approach to permanent magnets. In this approach, rotations are considered by Euler’s transformations matrices 

permitting the calculation of all permanent magnets flux densities contributions at the same points in the 

surrounding free space. These points, part of a uniform rectangular grid of the active EMF sensor surface, are used 

to compute the EMF by Faraday’s law. The validation results between experimental and simulated ones confirm 

the robustness and the efficiency of the proposed analytical approach. 
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1. Introduction 

The magnitude of the electromotive force (EMF) presents an essential research subject in 

the field of electrical engineering, mostly in the development of high throughput techniques, 

solar energy, photo-catalysis, high temperature systems and solid-state electrolytes [1]. There 

are several works which are based on EMF calculation, in particular in the field of electrical 

machines for diagnosis [2], optimization [3], control [4] and measurements (speed torque) [5]. 

Furthermore, EMF plays a very important role in the field of electrical engineering and it is one 

of the electromagnetic quantities for which various special sensors have been manufactured. 

Existing EMF sensors are safe, reliable, robust and can be used in extreme conditions. In the 

majority of cases, they are used to retrieve information and test the performances of systems 

before final manufacture. Concerning classical induction heating devices which are generally 

composed of hollow copper inductors allowing the flow of cooling fluid and metal armature 

parts to be heated located inside these inductors or close to them. The essential parameters in 

induction heating are the strong supply currents and the high applied frequencies. These heaters 

are known by their low efficiencies, about 45 % of the power is transmitted and the rest is lost 

as the Joule heating effect. The researchers tried to increase the efficiency by optimizing the 

shape of the inductors but they managed to earn only 10% [6]. Other researchers have thought 

about the use of rare earth permanent magnets, which occur significant magnetic field 

intensities. In this manner, to induce eddy currents, the users are forced to permanently move 
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the magnets or the pieces to be heated. The experimental results permit to confirm that 

permanent magnet heater prototypes give excellent process quality with minimal energy 

consumption when compared to conventional AC heaters. Moreover, permanent magnet 

devices contribute to increase in efficiency (from 50% to more than 70%) allowing not only to 

reduce the cost of energy used but also leading to positive on environment, as demonstrated in 

[6]. The real problem are always the magnets demagnetization risks at high temperatures [6-9], 

in this case, contrary to magnetic refrigeration systems, permanent magnets must be thermally 

insulated. Refrigeration with the use of permanents magnets of materials has been largely used 

for the last ten years [10], but the competitiveness seems in favor of superconductor materials 

because of their strong magnetic fields, permitting large cooling power applications [11-12]. 

Recent developments in permanent magnets induction heating systems are very promising 

for relatively mean power ranges. Special attention is given to heating of nonmagnetic 

cylindrical billets in an alternating magnetic field created with permanent magnets rotating 

systems [13-14]. Unusual disposition of permanent magnets is important to amplify the 

magnetic effect. In this way, an alternative arrangement of permanent magnets with a constant 

rotation speed is needed for sinusoidal waveform heating. These arrangements were generally 

inspired by linear Halbach configurations [13-19]. Cylindrical Halbach arrays are emerging as 

competitive magnet structures for permanent magnet type eddy current heating. Other works 

investigate the use of the permanent magnet type eddy current heating method based on 

cylindrical Halbach arrays to reduce the viscosity of crude oil in oil wells [19]. Several 

modelling and simulation works have been realized to observe the performances of these kinds 

of devices and the finite elements method (FEM) is the most applicable numerical approach 

[19-21]. Used for bi-dimensional or three-dimensional configurations, FEM needs meshes for 

all significant electromagnetic regions and the surrounding air space. Moreover, in the presence 

of any movements, meshes must be partially or globally renewed at every displacement step, 

causing large time costs and possible CPU memory saturation. To avoid these situations, we 

have developed in this work a three-dimensional analytical model for permanent magnets from 

quasi-static Green's functions executed in the Coulombian approach [22-27]. The most 

important assumption of the Coulombian approach is taking into consideration constant 

magnetizations developed by permanent magnets. This is possible for all modern manufactured 

permanents magnet and especially the rare-earth element ones. Analytical developments are 

possible for parallelepipedic permanent magnets shapes [22-27]. Furthermore, we do not need 

any meshes in the surrounding spaces and the total implementation is suitable for any 

programming codes. After developing magnetic flux density expressions for any space points 

surrounding cuboidal permanent magnets, the electromotive force can be expressed and 

calculated for the active EMF sensor surface under consideration. The calculations will be 

performed for respectively four and eight permanent magnet arrangements and validated by 

practical results. 

2. Problem description 

The test bench has been made in the Laboratory of Electrical Engineering of Constantine 1 

University. The bench consists of two electrical motors working in fixed or variable speeds 

modes, controlled, and powered by power inverters. We use an EMF inductive sensor of 1600 

turns to measure the EMF with one signal analyser apparatus. The permanent magnets are 

mounted on the external surface of the cylinder drum (heater cylinder) as shown in Fig. 1. 
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Fig. 1. Practical test bench. 

The cylinder heater is rotated with constant speed and the generated voltage in nearby EMF 

sensor is then observed. The sensor is placed at the top of the heater cylinder as shown in Fig. 2. 

A maximum of eight permanent magnets can be placed on the cylinder. These magnets are 

mounted to create alternatively radial magnetizations. The number of permanent magnets can 

be easily reduced to four, but the magnetization of the magnets must be alternated to amplify 

the frequency of the induced flux densities. The electromagnetic system dimensions, distances 

and physical parameters are shown in Table 1. 

 

Fig. 2. Proposed configurations. 

Table 1. Dimensions and parameters Data. 

 

 

 

 

3. Analytical Developments 

3.1.  Magnetic flux density calculation 

The Coulombian approach to parallelepipedal permanent magnets is used here [18, 22-27]. 

Each cuboidal magnet is replaced by two equivalent opposite charged surfaces as shown in 

Fig. 3. The concerned surfaces considered have always their normal vectors parallel to the 

magnetization one. In our case, the magnetization is along the Z axis, leading us to consider the 

two surfaces in the XY- plane. This charge density, indicated by 𝜎, is equivalent to magnetic 

polarization 𝐽 and proportional to magnetization 𝑀𝑝: 

 𝜎 = 𝐽 = 𝜇0𝑀𝑝.    (1) 

Magnet 

Half length of PM 

a 

Half width of PM 

b 

Half height of PM 

c 

Polarization of PM 

J 

50 mm 6 mm 5 mm 1.2 T 

Heater 

Radius 

R 
Rotation speed 

w 
Air gap length 

e  

45 mm 20×2 rad/s 2 mm 
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The origin of the (x, y, z) axes is assumed at the center of the permanent magnet with the 

following dimensions: 2a=10 cm, 2b=1.2 cm and 2c=1 cm. The calculation point is localized 

by the distances (α, β and γ) according respectively to (x, y, and z) axes. 

 

Fig. 3. Charged-surfaces model of permanent magnet. 

To configure the permanent magnets heater cylinder, we first assume that the rotation along 

X-axis and all the permanent magnets magnetizations that are oriented in the inclined 𝑍𝑛 axes 

respecting (𝑛 = 1…𝑁), where 𝑁 is the total number of permanent magnets, θ is the rotation 

angle and 𝛥𝜃 is the fixed angular distance between adjacent permanent magnets as given in the 

following expression:  

 
N




2
= .   (2) 

The real position of any permanent magnet (n) is given in: 

 ( )  −+= 1nn .                  (3) 

To consider all permanent magnets in the same calculation, we should start from a fixed 

global coordinate system (X, Y, Z) located in the center of the cylinder. The local axes are those 

located in the centers of cuboid permanent magnets. Each local coordinate system is inclined 

by its θn angle according to the x-direction as shown in Fig. 4. 

 

Fig. 4. Three-dimensional system configuration. 
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The relationship between local rotary axes and global axes is defined by Euler’s 

transformation matrices. The transformation matrix (with Euler’s transformation used for only 

X-axis) is as follows: 

 𝑇𝑛 = [
1 0 0
0 𝑐𝑜𝑠 𝜃𝑛 −𝑠𝑖𝑛 𝜃𝑛
0 𝑠𝑖𝑛 𝜃𝑛 𝑐𝑜𝑠 𝜃𝑛

] . (4) 

The calculating point (α, β, γ), defined in the global coordinate system must be separately 

expressed in all the local coordinates as follows: 

 [

𝛼𝑛
𝛽𝑛
𝛾𝑛

] = [
1 0 0
0 𝑐𝑜𝑠 𝜃𝑛 −𝑠𝑖𝑛 𝜃𝑛
0 𝑠𝑖𝑛 𝜃𝑛 𝑐𝑜𝑠 𝜃𝑛

] ⋅ [

𝛼
𝛽
𝛾
] − [

0
0
𝑅
] , (5) 

where: R is the radius of the cylinder, identical to the distance separating the center of the 

global coordinate system and the local ones located at the center of each permanent magnet. 

The expressions of magnetic flux density components at the calculating points are given as in 

[18, 21-22]. With respect to (αn, βn and γn), the equations of flux densities are as follows: 

 𝐵𝑛𝑥 =
𝜎

4𝜋
∑ ∑ ∑ (−1)𝑖+𝑗+𝑘 𝑙𝑛( 𝑟 − 𝑉) 1

𝑗=0
1
𝑖=0

1
𝑘=0 , (6) 

 𝐵𝑛𝑦 =
𝜎

4𝜋
∑ ∑ ∑ (−1)𝑖+𝑗+𝑘 𝑙𝑛( 𝑟 − 𝑈)1

𝑗=0
1
𝑖=0

1
𝑘=0  , (7) 

 𝐵𝑛𝑧 =
𝜎

4𝜋
∑ ∑ ∑ (−1)𝑖+𝑗+𝑘𝑡𝑔−1 (

𝑈𝑉

𝑊𝑟
)1

𝑗=0
1
𝑖=0

1
𝑘=0 . (8) 

The variables U,V and W are as follows: 

 

{
 
 

 
 𝑈 = 𝛼𝑛 − (−1)

𝑖𝑎

𝑉 = 𝛽𝑛 − (−1)
𝑗𝑏

𝑊 = 𝛾𝑛 − (−1)
𝑘𝑐

𝑟 = √𝑈2 + 𝑉2 +𝑊2

  . (9) 

After defining all magnetic induction components in their specific axes for all the magnets, 

starting from the first (n = 1) to the last (n = N), components in the global axes (X, Y, Z) must 

be expressed to superpose them. 

 [

𝐵𝑥
𝐵𝑦
𝐵𝑧

] = ∑ (−1)𝑛 [
1 0 0
0 𝑐𝑜𝑠 𝜃𝑛 𝑠𝑖𝑛 𝜃𝑛
0 − 𝑠𝑖𝑛 𝜃𝑛 𝑐𝑜𝑠 𝜃𝑛

]𝑁
𝑛=1 ⋅ [

𝐵𝑛𝑥
𝐵𝑛𝑦
𝐵𝑛𝑧

] = ∑ (−1)𝑛𝑇𝑛
−1𝑁

𝑛=1 ⋅ [

𝐵𝑛𝑥
𝐵𝑛𝑦
𝐵𝑛𝑧

].  (10) 

The (-1)n term represents the alternative effect of magnetization. 

3.2. EMF calculation 

To calculate the induced EMF from the magnetic flux density over the EMF sensor surface, 

Faraday’s law is applied as follows: 

 𝐸 = −𝑁𝑡
𝑑𝜑

𝑑𝑡
= −𝑁𝑡

𝑑

𝑑𝑡
∬ 𝐵 ⋅ 𝑑𝑆 = −𝑁𝑡

𝑑𝜃

𝑑𝑡

𝑑

𝑑𝜃
∬ 𝐵 ⋅ 𝑑𝑆
𝑆𝑆

, (11) 

where 𝑁𝑡 is the number of turns, and the variable speed is presented by 𝑑𝜃/𝑑𝑡. 
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To avoid direct integral calculations, which are very hard and may prove analytically 

impossible, the entire surface is decomposed to several small ones, in which the magnetic flux 

density variations can be neglected. According to the shape of the EMF sensor active surface, 

a rectangular grid can be used as shown in Fig. 5. 

 

Fig. 5. Decomposed rectangular active surface for the EMF sensor. 

Let us consider M, the total number of all small rectangular surfaces. In this case, (11) can 

be written as:  

 𝐸 = −𝑁𝑡
𝑑𝜃

𝑑𝑡
∑ 𝐵𝑚. 𝑑𝑆𝑚
𝑀
𝑚=1 . (12) 

In the case of constant speed, the following expression can be given: 

 𝛺 =
𝑑𝜃

𝑑𝑡
= 𝑐𝑠𝑡  (13) 

Below, the normal vector of the active surface for the sensor is oriented in the Z direction. We 

can simply write: 

 𝐸 = −𝑁𝑡𝛺 ⋅ ∑ 𝐵𝑚𝑧𝑑𝑆𝑚
𝑀
𝑚=1 .  (14) 

From equation (10), each flux density component can be expressed as: 

 𝐵𝑚𝑧 = ∑ (−𝑠𝑖𝑛 𝜃𝑛 ⋅ 𝐵𝑛𝑦 + 𝑐𝑜𝑠 𝜃𝑛 ⋅ 𝐵𝑛𝑧)
𝑁
𝑛=1 ,  (15) 

where Bny and Bnz are same as the components developed in (7-8). The only changes are in the 

expressions of variables U, V, and W: 

 

𝑈 = 𝛼𝑛 − 𝛼𝑚 − (−1)
𝑖𝑎

𝑉 = 𝛽𝑛 − 𝛽𝑚 − (−1)
𝑗𝑏

𝑊 = 𝛾𝑛 − 𝛾𝑚 − (−1)
𝑘𝑐

 ,  (16) 

where (αm, βm, and γm) are the space coordinates of the centers of all elements of the rectangular 

grid of active surface considered for the EMF sensor, Fig. 5. 

4. Calculations and experimental validation 

The developed approach has been applied to two cases studies. In the first case there are 8 

alternating magnets (maximum possible number of magnets), whilst in the second one study, 

there are 4 alternating magnets.  

Analytical calculations are implemented in the commercial MATLAB programming 

software. The tridimensional configuration is shown by respective dimensions and the 

geometry of the studied system using the patch objects proposed by the same software. 

Consequently, we demonstrate the two investigated configurations in Fig. 6 and Fig. 7. 
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Fig. 6. Eight-PM arrangement. 

 

Fig. 7. Four-PM arrangement. 

The rotation speed is chosen as 20 round/s thus, in this case, we observe the magnetic flux 

densities (MFD) on the active surface of the EMF sensor. This sensor is square-shaped 

(2cm×2cm) and can be composed of several small surfaces following an imposed linear grid 

pattern. Next, results are obtained for respectively (M=60) total surface elements Fig. 5. In Fig. 

8, at θ = 0°, the sensor is situated above the first permanent magnet. This position presents a 

perfect symmetric configuration. Contrarily, at θ = 30°, which is an arbitrary position Fig. 9.  

 

Fig. 8. MFD on the active surface of EMF sensor for 

the eight-PM configuration at θ = 0°. 

 

Fig. 9. MFD on the active surface of EMF sensor for 

the eight-PM configuration at θ = 30°. 

In the MATLAB programming code, the manipulation of matrices, element-by-element 

multiplications or divisions are very fast and suitable techniques. In other words, with a good 

using and for skillful programmers, the number of surface elements affect hardly the time cost 

and considerably increase the precision and the quality. These advantages are in favor of 

numerical integration calculations of EMF. For a complete rotation of the cylinder at 20 round/s, 

the total time is 0.05 s. In this case, we present the results of calculating the magnetic flux (in 

Weber) and the electromotive force (in Volt) for the four- and eight-permanent magnet 

configurations, Fig. 10 and Fig. 11. 

From these results, we can perfectly see that the EMF form is similar to the negative 

derivative of the magnetic flux. The measured EMF signals, given by the analyzer for the same 

considerations, are compared to those calculated analytically in Fig. 12 and Fig. 13. The 

resulting curves look excellent with only a few accepted differences.  

For these and other applications, such as Inductrack levitation [28], magnetic couplings [29], 

passive magnetic bearings [30], and permanent magnet undulators [31], the magnetic delivered 

by permanent magnet arrangements should be as close to the sinusoidal harmonic shapes as 

possible to avoid noise or vibration. EMF detection allows the effects of a magnetic field or 

flux density to be observed at close range. 
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Fig. 10. Magnetic flux and EMF as a function of time 

for the four-PM arrangement. 

 

Fig. 11. Magnetic flux and EMF as a function of time 

for the eight-PM arrangement. 

For the applied airgap (e=2mm), the best arrangement is that of eight permanent magnets, 

in which the FEM is purely sinusoidal. The use of the four-magnet configuration as a sinusoidal 

magnetic field source is possible, but for a much larger air gap leading to reduction of the 

intensity of magnetic fields. 

 

Fig. 12. Measured and calculated EMF for the four-

PM configuration. 

 

Fig. 13. Measured and calculated EMF for the eight 

PM configuration. 

As can be seen in Fig. 12 and Fig. 13, the frequency of the EMF signals is always constant 

following the invariant rotation velocity of the cylinder. This kind of control is largely used in 

permanent magnet motors through observing the magnet’s flux or the electromotive force 

(EMF) to detect the rotor’s position information contained in these physical variables [32]. Still, 

in the same kind of applications, the average temperature of permanent magnets can also be 

estimated using Back Electromotive Force (BEMF) by analyzing the fundamental or higher-

order harmonics [33]. The EMF measurements can be used to detect asymmetrical 

demagnetization defects by observing some irregularities in periodical signals which can easily 

be applied in our analytical approach by reducing the values of magnetization for some 

magnets. In [34], the results show the effectiveness of the EMF sensing technique. In real drive 

systems, this condition monitoring methodology can be applied to detect demagnetization 

problems at an early stage before large damage occurs, or as a virtual sensor to monitor the 

magnet temperature. 

Table A.1 and Table A.2 shows the numerical values of measured and analytical results 

according to Fig. 6 for configurations with eight permanent magnets and for four permanent 

magnets in Fig. 7. In the third and fourth columns of the same table, absolute and relative errors 

have been given. 
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The calculated mean values and standard deviation from relative errors vectors for the two 

studied configurations are shown in Table 2. 

Table 2. Statistical presentation of relative errors. 

 Mean value Standard deviation value 

PM=4 0.1780 0.1329 

PM = 8 0.0995 0.0782 

It is always difficult to talk about the origin of errors, especially those resulting from 

measurements. However, in this specific case, we believe that these errors are due to the 

practical implemented conditions. In this situation, the controlled rotation speed of the heater 

cylinder ensured by the driving motor whose speed can slightly or unexpectedly decrease or 

increase compared to the reference fixed speed influences directly the periodicity of the 

measured signal. This influence contributes to increasing errors compared to analytical results 

that do not have this kind of problem. The sampling offered by the digital analyzer has its own 

limits notably in terms of precision. In other words, the number of measured values is limited 

and depends on the device used. We also notice that the mean of relative errors and the standard 

deviation values for the eight-PM system is lower than that for the four-PM one; we think that 

this is due to the inductive nature of this kind of sensor where the sensitivity increases with the 

variation of the magnetic field. In this case, the eight PM variant doubles the period of the 

magnetic field quantity and, consequently, the EMF-sensed signal compared to four-PM 

configurations. In addition, in this application some fluctuations at the peak values of t curves, 

in particular, for the four-PM arrangement, show that the magnets do not have precisely the 

same remnant magnetizations despite their being intended to have. 

5. Conclusions 

In this work, the EMF is measured and calculated, in order to test the performances of a 

designed permanent magnets heater cylinder and prove the efficiency of the three-dimensional 

Coulombian approach. The use of this analytical computing procedure is justified by its 

robustness, simplicity in programming, and its adaptability to modern industrial 

parallelepipedal permanent magnets of rigid magnetizations. There are significant technical 

novelties in this paper and the principal one is the use of Euler’s transformations to superpose 

all the permanent magnets effects in only one point of calculation. Using the matrix 

manipulation techniques, the computation at several observation points is simultaneously 

realized, permitting very fast executions. Realizing and exploiting the experimental bench, we 

have succeeded to measure the EMF and demonstrated the strength of our approach by 

comparing the results for arrangements of four and the eight permanent magnets. From 

measured and analytical results, we can observe the periodicity of magnetic quantities 

developed by such applications. With these results, we can decide on the placement of the metal 

pieces to be heated and predict the shapes and the values of induced eddy currents (some results 

were published by our team on this subject [35]). On other hand, the analytical approach 

developed by us represents a good way for the optimization process and inverse problem 

analysis because all the expressions obtained are in direct relation with dimensions and physical 

parameters. 
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Appendices 

Table A.1. Relative error calculation for four permanent magnets (PM=4). 

Time 

[s] 

Measured 

[V] 

Calculated 

[V] 

Absolute 

Error 

[V] 

Relative 

Error 

Time 

[s] 

Measured 

[V] 

Calculated 

[V] 

Absolute 

Error 

[V] 

Relative 

Error 

Time 

[s] 

Measured 

[V] 

Calculated 

[V] 

Absolute 

Error 

[V] 

Relative 

Error 

0.0004 

0.0008 

0.0012 

0.0016 

0.0021 

0.0025 

0.0029 

0.0033 

0.0037 

0.0041 

0.0045 

0.0049 

0.0053 

0.0057 

0.0062 

0.0066 

0.0070 

0.0074 

0.0078 

0.0082 

0.0086 

0.0090 

0.0094 

0.0098 

0.0103 

0.0107 

0.0111 

0.0115 

0.0119 

0.0123 

0.0127 

0.0131 

0.0135 

0.0139 

0.0144 

0.0148 

0.0152 

0.0156 

0.0160 

0.0164 

0.0168 

0.0172 

0.0176 

0.0180 

0.0185 

0.0189 

0.0193 

0.0197 

0.0201 

0.0205 

0.0209 

0.0213 

0.0217 

0.0221 

0.0226 

0.0230 

0.0234 

0.0238 

0.0242 

0.0246 

0.0250 

0.0254 

0.0258 

0.0262 

0.0267 

0.0271 

0.0275 

0.0279 

0.0283 

0.0287 

0.0291 

0.0295 

0.0299 

0.0303 

0.0308 

0.0312 

0.0316 

0.0320 

0.0324 

0.0328 

-0.9169 

-1.6810 

-2.9036 

-4.2790 

-5.0431 

-5.0431 

-5.0431 

-4.4318 

-3.6677 

-3.0564 

-2.2923 

-1.3754 

-1.2226 

-1.0697 

-1.0697 

-0.7641 

-0.7641 

-0.7641 

-1.0697 

-1.5282 

-2.2923 

-2.7508 

-3.0564 

-3.6677 

-4.1262 

-4.2790 

-4.7375 

-4.2790 

-3.3621 

-2.4451 

-0.9169 

0.7641 

2.4451 

3.5149 

4.5846 

5.1959 

5.3487 

5.1959 

4.7375 

4.1262 

3.2092 

2.7508 

2.1395 

1.8339 

1.5282 

1.3754 

0.9169 

1.6810 

1.8339 

1.9867 

2.2923 

2.7508 

3.2092 

3.5149 

4.1262 

4.2790 

4.4318 

4.4318 

3.9734 

3.2092 

1.8339 

0.4585 

-1.2226 

-2.5980 

-3.8205 

-4.7375 

-5.0431 

-5.0431 

-4.7375 

-3.8205 

-3.1075 

-2.4451 

-1.9867 

-1.3754 

-1.3754 

-1.2226 

1.0697 

-1.8339 

-2.1395 

-1.3754 

-0.9368 

-2.6808 

-4.0694 

-4.9634 

-5.3324 

-5.2426 

-4.8197 

-4.2057 

-3.5261 

-2.8721 

-2.2999 

-1.8374 

-1.4942 

-1.2705 

-1.1634 

-1.1705 

-1.2921 

-1.5305 

-1.8888 

-2.3658 

-2.9503 

-3.6112 

-4.2884 

-4.8858 

-5.2750 

-5.3135 

-4.8807 

-3.9211 

-2.4783 

-0.7044 

1.1671 

2.8777 

4.2099 

5.0377 

5.3441 

5.2050 

4.7505 

4.1222 

3.4415 

2.7953 

2.2358 

1.7879 

1.4598 

1.2508 

1.1580 

1.1794 

1.3154 

1.5687 

1.9420 

2.4334 

3.0296 

3.6965 

4.3698 

4.9488 

5.3018 

5.2871 

4.7898 

3.7650 

2.2705 

0.4705 

-1.3948 

-3.0685 

-4.3423 

-5.1037 

-5.3487 

-5.1625 

-4.6787 

-4.0378 

-3.3574 

-2.7199 

-2.1734 

-1.7403 

-1.4272 

-1.2329 

-1.1545 

-1.1901 

-1.3406 

-1.6088 

-1.9971 

-2.5027 

0.0198 

0.9998 

1.1658 

0.6844 

0.2893 

0.1995 

0.2235 

0.2261 

0.1416 

0.1843 

0.0076 

0.4620 

0.2717 

0.2008 

0.0936 

0.4064 

0.5279 

0.7664 

0.8190 

0.8376 

0.6579 

0.8604 

1.2319 

1.2181 

1.1488 

1.0345 

0.1433 

0.3579 

0.8838 

1.7407 

2.0840 

2.1136 

1.7647 

1.5228 

0.7595 

0.0091 

0.5982 

1.0738 

1.2960 

1.3308 

0.9735 

0.9629 

0.6797 

0.5830 

0.3702 

0.1960 

0.3985 

0.1123 

0.1082 

0.4467 

0.7373 

0.9457 

1.1605 

1.4339 

1.1756 

1.0081 

0.3579 

0.6668 

1.7029 

2.7388 

3.2287 

3.5270 

3.1198 

2.5057 

1.5282 

0.4251 

0.3644 

1.0053 

1.3800 

1.1006 

0.9341 

0.7048 

0.5595 

0.1425 

0.2209 

0.0325 

0.2708 

0.2250 

0.1424 

1.1273 

0.0037 

0.1869 

0.2180 

0.1279 

0.0541 

0.0373 

0.0418 

0.0423 

0.0265 

0.0345 

0.0014 

0.0864 

0.0508 

0.0375 

0.0175 

0.0760 

0.0987 

0.1433 

0.1531 

0.1566 

0.1230 

0.1609 

0.2303 

0.2277 

0.2148 

0.1934 

0.0268 

0.0669 

0.1652 

0.3254 

0.3896 

0.3952 

0.3299 

0.2847 

0.1420 

0.0017 

0.1118 

0.2008 

0.2423 

0.2488 

0.1820 

0.1800 

0.1271 

0.1090 

0.0692 

0.0366 

0.0745 

0.0210 

0.0202 

0.0835 

0.1378 

0.1768 

0.2170 

0.2681 

0.2198 

0.1885 

0.0669 

0.1247 

0.3184 

0.5120 

0.6036 

0.6594 

0.5833 

0.4685 

0.2857 

0.0795 

0.0681 

0.1880 

0.2580 

0.2058 

0.1746 

0.1318 

0.1046 

0.0266 

0.0413 

0.0061 

0.0506 

0.0421 

0.0266 

0.2108 

0.0332 

0.0336 

0.0340 

0.0344 

0.0349 

0.0353 

0.0357 

0.0361 

0.0365 

0.0369 

0.0373 

0.0377 

0.0381 

0.0385 

0.0390 

0.0394 

0.0398 

0.0402 

0.0406 

0.0410 

0.0414 

0.0418 

0.0422 

0.0426 

0.0431 

0.0435 

0.0439 

0.0443 

0.0447 

0.0451 

0.0455 

0.0459 

0.0463 

0.0467 

0.0472 

0.0476 

0.0480 

0.0484 

0.0488 

0.0492 

0.0496 

0.0500 

0.0504 

0.0508 

0.0513 

0.0517 

0.0521 

0.0525 

0.0529 

0.0533 

0.0537 

0.0541 

0.0545 

0.0549 

0.0554 

0.0558 

0.0562 

0.0566 

0.0570 

0.0574 

0.0578 

0.0582    

0.0586 

0.0590 

0.0595 

0.0599 

0.0603 

0.0607 

0.0611 

0.0615 

0.0619 

0.0623 

0.0627 

0.0631 

0.0636 

0.0640 

0.0644 

0.0648 

0.0652 

0.0656 

-1.6810 

-1.9867 

-2.7508 

-3.0564 

-3.8205 

-4.1262 

-4.4318 

-4.4318 

-3.8205 

-3.0564 

-1.6810 

-1.0392 

1.8339 

2.7508 

4.4318 

4.8903 

5.3487 

5.0431 

4.5846 

3.9734 

3.3621 

2.7508 

1.8339 

1.3754 

0.9169 

1.1462 

0.9169 

1.0697 

1.3754 

1.6810 

2.1395 

2.5980 

3.0564 

3.5149 

3.7769 

4.3008 

4.2026 

3.9734 

3.6677 

3.5149 

2.7508 

1.0697 

-0.4585 

-2.1395 

-3.3621 

-4.2790 

-5.3487 

-5.1959 

-4.7375 

-4.2790 

-3.3621 

-2.7508 

-2.1395 

-1.6810 

-1.3754 

-0.9169 

-0.9169 

-0.9169 

-1.0697 

-1.2226 

-1.3754 

-1.3754 

-2.5980 

-2.7508 

-3.6677 

-4.2790 

-4.4318 

-4.4318 

-4.2790 

-4.1262 

-3.0564 

-1.8339 

-0.4585 

1.2226 

3.0564 

4.3881 

4.8903 

4.7375 

4.5846 

4.4318 

-3.1101 

-3.7821 

-4.4497 

-5.0082 

-5.3229 

-5.2531 

-4.6904 

-3.6015 

-2.0578 

-0.2355 

1.6195 

3.2530 

4.4666 

5.1615 

5.3466 

5.1154 

4.6045 

3.9529 

3.2741 

2.6460 

2.1128 

1.6946 

1.3965 

1.2168 

1.1527 

1.2026 

1.3676 

1.6508 

2.0541 

2.5735 

3.1916 

3.8676 

4.5281 

5.0638 

5.3379 

5.2113 

4.5827 

3.4307 

1.8406 

0.0000 

-1.8406 

-3.4307 

-4.5827 

-5.2113 

-5.3379 

-5.0638 

-4.5281 

-3.8676 

-3.1916 

-2.5735 

-2.0541 

-1.6508 

-1.3676 

-1.2026 

-1.1527 

-1.2168 

-1.3965 

-1.6946 

-2.1128 

-2.6460 

-3.2741 

-3.9529 

-4.6045 

-5.1154 

-5.3466 

-5.1615 

-4.4666 

-3.2530 

-1.6195 

0.2355 

2.0578 

3.6015 

4.6904 

2.8721 

3.5261 

4.2057 

4.8197 

5.2426 

5.3324 

5.2531 

1.4291 

1.7954 

1.6990 

1.9518 

1.5023 

1.1269 

0.2586 

0.8303 

1.7628 

2.8209 

3.3005 

4.2921 

2.6328 

2.4107 

0.9148 

0.2251 

0.7443 

1.0902 

1.3105 

1.3274 

1.2492 

1.0562 

0.4374 

0.1585 

0.2358 

0.0564 

0.4507 

0.5810 

0.6787 

0.8925 

1.0521 

1.2696 

1.4716 

1.5489 

1.5610 

0.9105 

0.3801 

0.5426 

1.8271 

3.5149 

4.5914 

4.5005 

4.1242 

3.0718 

1.9758 

0.7848 

0.8207 

1.3284 

1.5458 

1.7055 

1.3080 

1.1000 

0.7719 

0.4785 

0.2227 

0.2999 

0.4795 

0.7777 

1.0431 

1.4234 

1.8987 

2.5775 

2.0065 

2.3646 

1.6789 

0.8825 

0.0348 

1.1789 

2.6595 

4.3617 

5.1142 

5.4353 

5.1489 

4.0305 

2.2664 

0.6200 

0.4405 

0.9554 

1.4746 

1.9292 

0.2672 

0.3357 

0.3176 

0.3649 

0.2809 

0.2107 

0.0483 

0.1552 

0.3296 

0.5274 

0.6171 

0.8025 

0.4922 

0.4507 

0.1710 

0.0421 

0.1392 

0.2038 

0.2450 

0.2482 

0.2336 

0.1975 

0.0818 

0.0296 

0.0441 

0.0105 

0.0843 

0.1086 

0.1269 

0.1669 

0.1967 

0.2374 

0.2751 

0.2896 

0.2919 

0.1702 

0.0711 

0.1015 

0.3416 

0.6571 

0.8584 

0.8414 

0.7711 

0.5743 

0.3694 

0.1467 

0.1534 

0.2484 

0.2890 

0.3189 

0.2445 

0.2057 

0.1443 

0.0895 

0.0416 

0.0561 

0.0897 

0.1454 

0.1950 

0.2661 

0.3550 

0.4819 

0.3751 

0.4421 

0.3139 

0.1650 

0.0065 

0.2204 

0.4972 

0.8155 

0.9561 

1.0162 

0.9626 

0.7535 

0.4237 

0.1159 

0.0824 

0.1786 

0.2757 

0.3607 

0.0660 

0.0664 

0.0668 

0.0672 

0.0677 

0.0681 

0.0685 

0.0689 

0.0693 

0.0697 

0.0701 

0.0705 

0.0709 

0.0713 

0.0718 

0.0722 

0.0726 

0.0730 

0.0734 

0.0738 

0.0742 

0.0746 

0.0750 

0.0754 

0.0759 

0.0763 

0.0767 

0.0771 

0.0775 

0.0779 

0.0783 

0.0787 

0.0791 

0.0795 

0.0800 

0.0804 

0.0808 

0.0812 

0.0816 

0.0820 

0.0824 

0.0828 

0.0832 

0.0836 

0.0841 

0.0845 

0.0849 

0.0853 

0.0857 

0.0861 

0.0865 

0.0869 

0.0873 

0.0877 

0.0882 

0.0886 

0.0890 

0.0894 

0.0898 

0.0902 

0.0906 

0.0910 

0.0914 

0.0918 

0.0923 

0.0927 

0.0931 

0.0935 

0.0939 

0.0943 

0.0947 

0.0951 

0.0955 

0.0959 

0.0964 

0.0968 

0.0972 

0.0976 

0.0980 

3.9734 

3.6677 

3.0564 

2.4451 

1.9867 

1.6810 

1.5282 

1.2226 

1.3754 

1.5282 

1.8339 

2.1395 

2.5980 

3.0564 

3.6677 

3.9734 

4.4318 

4.4318 

4.2790 

3.6677 

2.7508 

1.2226 

-0.1528 

-2.1395 

-2.3865 

-3.1328 

-4.7375 

-4.7375 

-4.5846 

-4.4318 

-4.0345 

-3.0564 

-2.5980 

-2.1395 

-1.5282 

-0.7641 

-1.2226 

-1.0697 

-1.5282 

-1.2226 

-1.3754 

-2.2923 

-2.4451 

-2.4451 

-3.0564 

-3.8205 

-4.1262 

-4.2790 

-3.9734 

-3.8205 

-2.9036 

-1.6810 

-0.3056 

1.0697 

2.1701 

2.9036 

4.8903 

5.1959 

5.0431 

4.7652 

3.9734 

3.5149 

2.7508 

2.4451 

1.8339 

0.9169 

0.7641 

0.6113 

0.7641 

0.9679 

1.1462 

1.5282 

2.1395 

2.5980 

3.5149 

3.9734 

4.4318 

4.5846 

4.5846 

5.3229 

5.0082 

4.4497 

3.7821 

3.1101 

2.5027 

1.9971 

1.6088 

1.3406 

1.1901 

1.1545 

1.2329 

1.4272 

1.7403 

2.1734 

2.7199 

3.3574 

4.0378 

4.6787 

5.1625 

5.3487 

5.1037 

4.3423 

3.0685 

1.3948 

-0.4705 

-2.2705 

-3.7650 

-4.7898 

-5.2871 

-5.3018 

-4.9488 

-4.3698 

-3.6965 

-3.0296 

-2.4334 

-1.9420 

-1.5687 

-1.3154 

-1.1794 

-1.1580 

-1.2508 

-1.4598 

-1.7879 

-2.2358 

-2.7953 

-3.4415 

-4.1222 

-4.7505 

-5.2050 

-5.3441 

-5.0377 

-4.2099 

-2.8777 

-1.1671 

0.7044 

2.4783 

3.9211 

4.8807 

5.3135 

5.2750 

4.8858 

4.2884 

3.6112 

2.9503 

2.3658 

1.8888 

1.5305 

1.2921 

1.1705 

1.1634 

1.2705 

1.4942 

1.8374 

2.2999 

4.9634 

4.0694 

2.6808 

0.9368 

1.9762 

2.0589 

1.7158 

1.2551 

0.8322 

0.4481 

0.1010 

0.5178 

0.7980 

1.1917 

1.5236 

1.8983 

2.0807 

2.1061 

1.6810 

1.1303 

0.0895 

1.3633 

2.8842 

4.1382 

5.0212 

4.9876 

4.6369 

3.1476 

2.9153 

1.8159 

0.3677 

1.0409 

1.5550 

1.9984 

2.0925 

1.4877 

1.2826 

0.9601 

0.3702 

0.4867 

0.2372 

0.7182 

0.7076 

1.5728 

2.0661 

1.8298 

2.3054 

2.7599 

2.2877 

1.2171 

0.0837 

1.4013 

2.8063 

4.5249 

5.3819 

5.6021 

5.1864 

4.2437 

3.1049 

1.9822 

0.6019 

1.5848 

2.0929 

2.3994 

2.0846 

1.9843 

1.4587 

1.2747 

0.6705 

0.3536 

0.7301 

1.2261 

1.5358 

1.9043 

2.3799 

2.6775 

2.6802 

2.6447 

1.8175 

0.9900 

0.3624 

1.9038 

3.6479 

0.3695 

0.3849 

0.3208 

0.2346 

0.1556 

0.0838 

0.0189 

0.0968 

0.1492 

0.2228 

0.2848 

0.3549 

0.3890 

0.3938 

0.3143 

0.2113 

0.0167 

0.2549 

0.5392 

0.7737 

0.9388 

0.9325 

0.8669 

0.5885 

0.5451 

0.3395 

0.0687 

0.1946 

0.2907 

0.3736 

0.3912 

0.2781 

0.2398 

0.1795 

0.0692 

0.0910 

0.0443 

0.1343 

0.1323 

0.2940 

0.3863 

0.3421 

0.4310 

0.5160 

0.4277 

0.2276 

0.0157 

0.2620 

0.5247 

0.8460 

1.0062 

1.0474 

0.9696 

0.7934 

0.5805 

0.3706 

0.1125 

0.2963 

0.3913 

0.4486 

0.3897 

0.3710 

0.2727 

0.2383 

0.1254 

0.0661 

0.1365 

0.2292 

0.2871 

0.3560 

0.4450 

0.5006 

0.5011 

0.4944 

0.3398 

0.1851 

0.0678 

0.3559 

0.6820 
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Table A.2. Relative error calculation for eight permanent magnets (PM=8). 

Time 
[s] 

 Meas. 

[V] 

Calc. 

[V] 

Abs. 

Error 

[V] 

Relative 

Error 

Time 

[s] 

Meas. 

[V] 

Calc. 

[V] 

Abs. 

Error 

[V] 

Relative 

Error 

Time 

   [s] 

 Meas. 

[V] 

     Calc. 

[V] 

Abs. 

Error 

[V] 

Relative 

Error 

Time 

   [s] 

 Meas. 

[V] 

     Calc. 

[V] 

Abs. 

Error 

[V] 

Relative 

Error 

0.0003 

0.0006 

0.0010 

0.0013 

0.0016 

0.0019 

0.0022 

0.0026 

0.0029 

0.0032 

0.0035 

0.0038 

0.0042 

0.0045 

0.0048 

0.0051 

0.0054 

0.0058 

0.0061 

0.0064 

0.0067 

0.0071 

0.0074 

0.0077 

0.0080 

0.0083 

0.0087 

0.0090 

0.0093 

0.0096 

0.0099 

0.0103 

0.0106 

0.0109 

0.0112 

0.0115 

0.0119 

0.0122 

0.0125 

0.0128 

0.0131 

0.0135 

0.0138 

0.0141 

0.0144 

0.0147 

0.0151 

0.0154 

0.0157 

0.0160 

0.0163 

0.0167 

0.0170 

0.0173 

0.0176 

0.0179 

0.0183 

0.0186 

0.0189 

0.0192 

0.0196 

0.0199 

0.0202 

0.0205 

0.0208 

0.0212 

0.0215 

0.0218 

0.0221 

0.0224 

0.0228 

0.0231 

0.0234 

0.0237 

0.0240 

0.0244 

0.0247 

0.0250 

1.3483 

0.3863 

-1.2974 

-2.8553 

-3.9656 

-5.6312 

-6.5830 

-7.2175 

-7.7727 

-8.1692 

-8.3279 

-8.4072 

-7.9313 

-7.8520 

-7.2175 

-6.7416 

-6.1071 

-4.9174 

-4.2829 

-2.5380 

-0.7138 

0.4759 

2.3001 

3.2518 

4.8381 

6.0278 

6.6623 

7.5347 

8.0106 

8.3279 

8.3896 

8.0899 

7.8520 

7.2968 

6.5830 

5.5519 

4.0648 

3.2331 

2.4587 

0.7931 

-0.9518 

-1.9035 

-3.4105 

-3.9656 

-5.5519 

-6.7416 

-6.9795 

-7.4554 

-7.5347 

-8.1692 

-8.4072 

-8.0899 

-7.4554 

-7.2175 

-6.5037 

-5.3933 

-4.7588 

-2.3001 

-1.5069 

0.0793 

1.7449 

2.4793 

4.0450 

4.8381 

6.4243 

7.1382 

7.4554 

7.9313 

7.9313 

7.9313 

7.5347 
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0.8783 

0.9270 

0.9801 

1.3864 

1.5465 

1.5142 

1.1355 

1.2436 

1.4371 

1.0216 

0.6440 

0.2380 

0.3100 

0.6743 

0.1999 

0.2889 

0.1834 

0.0735 

0.3173 

0.6899 

0.9588 

1.0154 

1.6874 

2.0546 

2.0011 

2.3877 

1.8088 

2.2261 

2.1414 

1.1843 

0.8878 

0.3883 

0.2990 

0.4041 

0.4540 

0.2536 

0.1657 

0.4519 

0.3966 

0.6404 

0.8477 

0.7422 

1.1484 

1.2292 

1.6729 

1.2941 

0.7519 

0.6128 

 

0.0456 

0.0344 

0.0497 

0.0289 

0.1168 

0.1166 

0.1248 

0.0718 

0.0568 

0.0561 

0.1000 

0.1036 

0.1290 

0.1147 

0.1019 

0.2212 

0.1692 

0.1544 

0.1315 

0.0374 

0.0928 

0.0112 

0.0738 

0.0259 

0.0178 

0.0400 

0.0168 

0.0289 

0.0439 

0.0841 

0.1035 

0.1092 

0.1155 

0.1634 

0.1822 

0.1784 

0.1338 

0.1465 

0.1693 

0.1204 

0.0759 

0.0280 

0.0365 

0.0795 

0.0236 

0.0340 

0.0216 

0.0087 

0.0374 

0.0813 

0.1130 

0.1197 

0.1988 

0.2421 

0.2358 

0.2813 

0.2131 

0.2623 

0.2523 

0.1396 

0.1046 

0.0458 

0.0352 

0.0476 

0.0535 

0.0299 

0.0195 

0.0533 

0.0467 

0.0755 

0.0999 

0.0875 

0.1353 

0.1448 

0.1971 

0.1525 

0.0886 

0.0722 
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